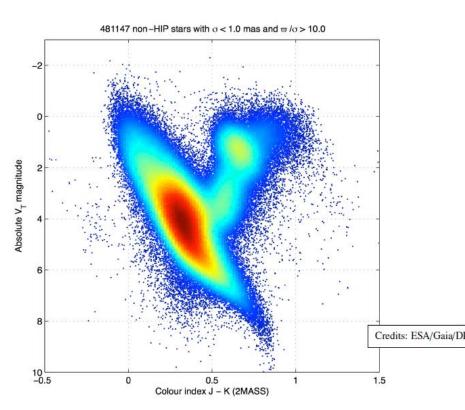


gaia


A. Vallenari INAF, Padova

The Galaxy view

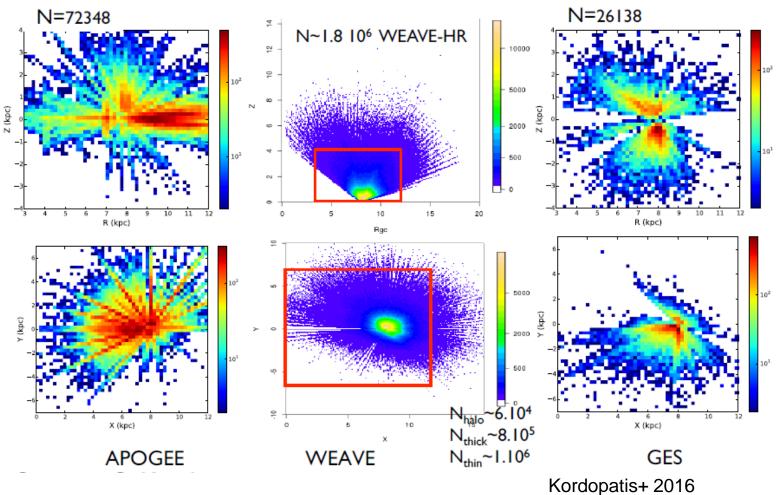
- Unveiling the complex history of the MW assembly and internal evolution is still one of the main interest of astrophysics
- However the specific questions we ask have evolved substantially
- Diagnostics: Kinematics + chemistry of stars+ distance+ ages → Galactic Archaelogy
- Much was learned from APOGEE, RAVE, GES, SEGUE...much still to learn
- Now Gaia will revolutionize the field
- First data release in Sept 2016 and second end 2018
- Well in the framework of LSST projects

Open questions

Structure formation on sub-galactic scale

Dark matter

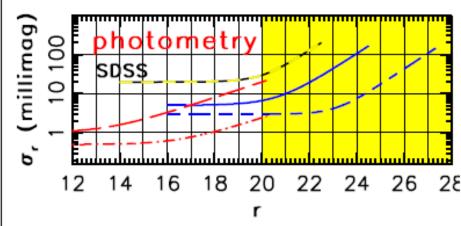
- How much substructure does the Galactic dark matter distribution have within 20– 50 kpc? How do they interact with cold streams? (Yoon + 2011)
- Disks respective roles of hierarchical formation and secular evolution in shaping the Galaxy?
 - what are the roles of spirals (+ number of arms, pitch angle, pattern speed?) and the bar (length, pattern speed?) (Helmi+2006, Schoenrich & Binney 2009, Minchev+2015)
 - How do Ocs interact with the Galactic potential?
 - What is the chemical evolution traced by the open clusters? (Magrini+ 2010, Jacobson+2016, Bragaglia+ 2006, Sestito + 2008, Cantat+2012, Donati+2012)

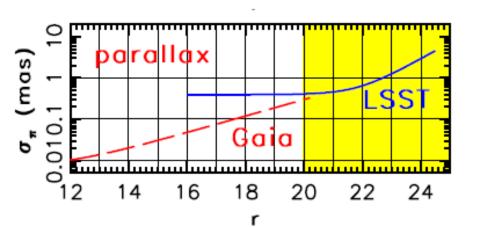


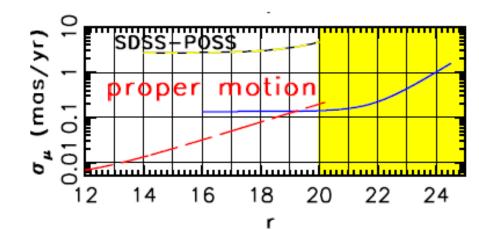
The Galaxy at HR

- APOGEE
- WEAVE

GES




Quantity	Gaia	LSST
Sky Coverage	whole sky	half sky
Mean number of epochs	70 over 5 yrs	1000 over 10 yrs
Mean number of observations	320^a over 5 yrs	1000^b over 10 yrs
Wavelength Coverage	320–1050 nm	ugrizy
Depth per visit $(5\sigma, r \text{ band})$	20	$24.5; 27.5^{c}$
Bright limit (r band)	6	16-17
Point Spread Function (arcsec)	0.14×0.4	0.70 FWHM
Pixel count (Gigapix)	1.0	3.2
Syst. Photometric Err. (mag)	$0.001, 0.0005^d$	$0.005, 0.003^e$
Syst. Parallax Err. (mas)	0.007 ^f	0.40^{f}
Syst. Prop. Mot. Err. (mas/yr)	0.004	0.14


Table 6.6: Adopted Gaia and LSST Performance

LSST Science Book: http://ls.st/sb

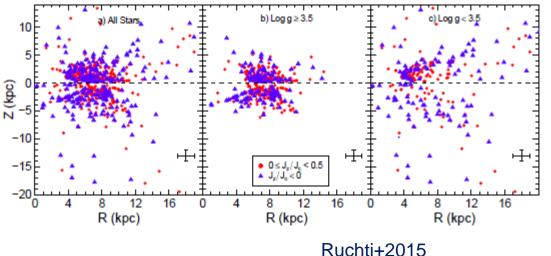
Gaia: http://sci.esa.int/gaia

A New Galaxy View

- Gaia (r=20.7,1 Billion objects) –LSST (r=27,10 billions objects) relation
 - Catalogue of the bright sky
 - Provide first epoch positions
 - LSST reference frame based on Gaia (Lupton private comm.)
 - PM-Parallax calibration on Gaia
 - Photometry zero point calibration on Gaia
- WEAVE-LSST relation (Northern Emisphere)
 - Spectroscopic Calibration of chemical abundances from photometry
 - Chemically Peculiar objects follow-up
- GES –LSST relation
 - As WEAVE in South

coherent view of the Galaxy from 3 to 24 mag

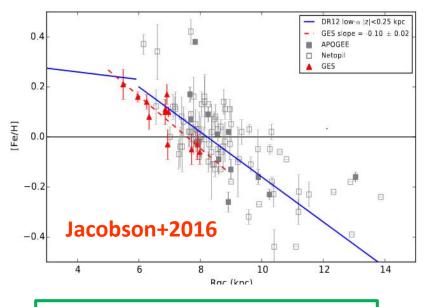
Local Volume

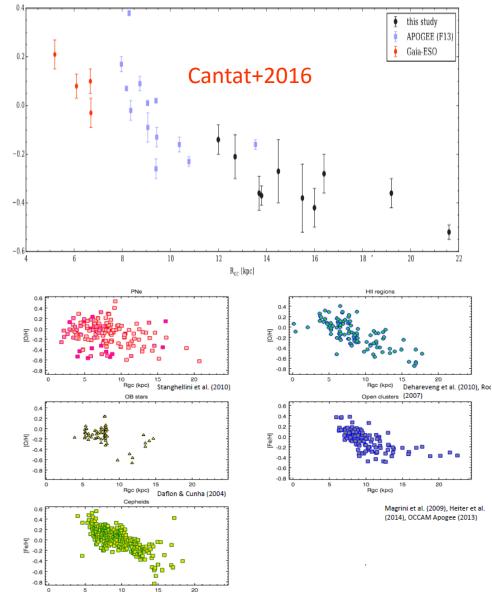


Mdwarf Mr=12 Δvtang 1km/s at 1 Kpc (r=22)

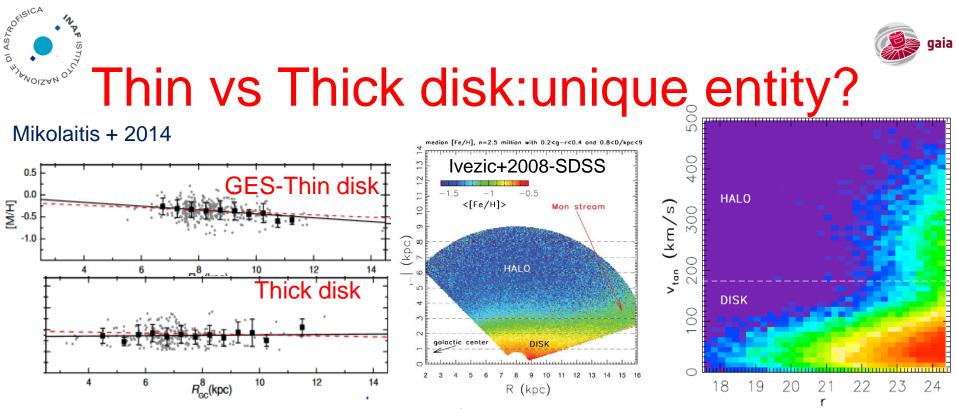
12 Km/s at 2.5 Kpc (r=24)

- MS at turnoff Mr=4.5 detected by Gaia at 10 Kpc, by LSST at 100Kpc (24.5)
- Mr=15 detected at 100 pc by Gaia and 800 pc by LSST



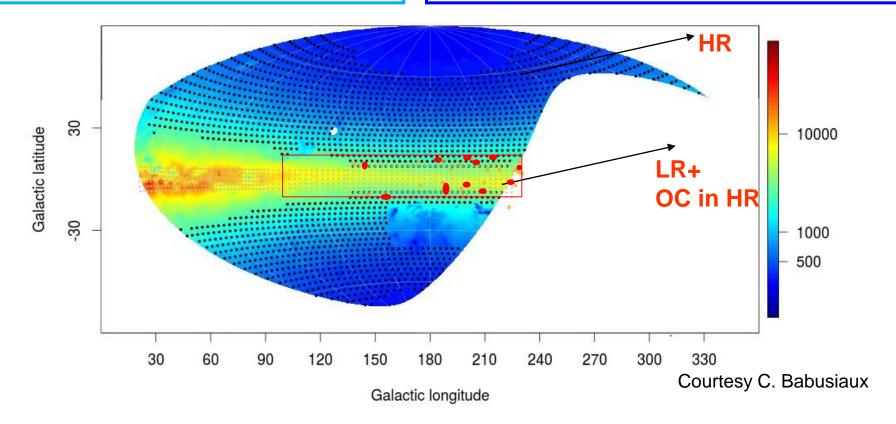

- Metal poor end of the thin disk: accretion (Nissan & Schuster 2010)
 - Quiet disk history? (Ruchi+2015,)
- **L**SST contribution : metallicity measurements for about 200 million MS F/G Stars up to 100 Kpc \rightarrow metallicity maps
 - Substructures at 20% density contrast in the inner disk |Z|<2 Kpc till 12 Kpc heliocentric distance -> merging history of the disk Synergie with WEAVE-GES disk surveys

GES MW radial metallicity distribution


- disk <u>chemical gradient</u> disk
 → disk formation process
 Andriewski+ 2004, Magrini+2009,
 Chiappini+2001; Minchev+2015
- Tracing radial migration ? (Wu+2007, vandePutte+ 2011, DeBattista+2015)

Rac (kpc)

Genovali et al. (2014)+refs. therein

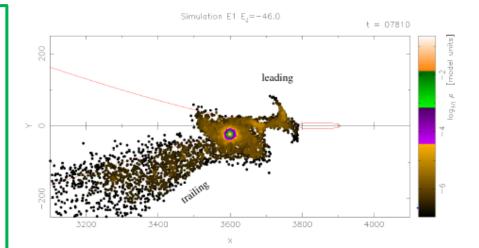

- The thin disc reaches metallicities as low as -0.8
- The thick disk can be supersolar (Kordopatis+2015, GES data)
- Are they two different entities? (Bovy+ 2010, Mikolaitis+2014, Bensby+2014)
- Metal rich tail of the thin disk(supersolar): migration?
- Inner halo- metal poor thick disk: no differences using APOGEE/RAVE (Hawkins +2015)→ thick disk formed in situ?
- LSST: Vtang at 10 km/s at 10 Kpc: disentangling halo/thick disk

WEAVE Galactic Surveys

LR halo: |b|>30 1.x10⁶ stars - 10,000 deg2 HR halo: |b|>30 1.x10⁴ stars - 5,000 deg2

LR disk: |b|<6 1.5x10⁶ stars – on 210+405 LoS

HR disk: 1,800 deg2 with 15<|b|<30° to insure coverage of discs

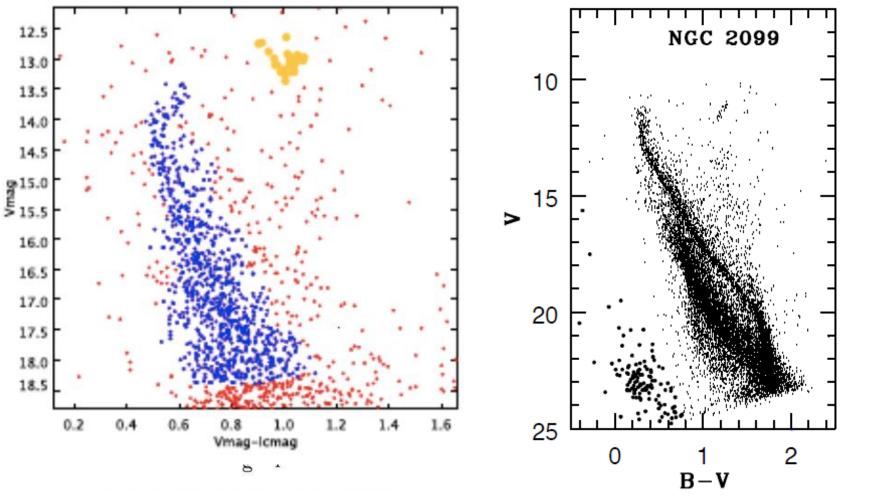

Open Clusters

Their birth, internal kinematics/ dynamical evolution, evaporation, disruption, self-pollution (if any) trace the Galactic environment

- → Tidal field (Berentzen & Athanassoula 2011, Kupper et al 2010)
- ightarrow interaction with giant molecular clouds & spiral arms

(Gieles et al 2006, Kujissen+2011) + stellar evolution effects (infant mortality)

- 400 known Ocs in LSST
- 50-60 Ocs in WEAVE
- 70-80 Ocs in GES
- LSST contribution:
- Improving the census of faint Ocs
- Stellar halos and tidal streams from photometry
- Understand the interplay between Ocs and field stars
- Dynamical tracers of MW potential



Kalirai 2001 ,0.5 Gyr, 1.5 Kpc-N

HR Open Clusters

NGC 2509- d=900pc

Direct age from WD cooling sequence up to 8Kpc (1Gyr) or 1Kpc (10Gyr)

Conclusions

- Continuum of properties between Gaia and LSST data
- New view of the disk formation and evolution combining Gaia+LSST+ spectroscopic surveys