





## CTA infrastructures: Telescopes and Sites

An overview of the various telescope structures and sites infrastructures needed to operate the Cherenkov Telescope Array

#### **Rodolfo Canestrari**

INAF-Astronomical Observatory of Brera

10 fold sensitivity of current instruments
10 fold energy range
improved angular resolution

O(100) telescopes in mixed arrays
distributed in two sites (North / South)
operated as observatory

# The future in VHE gamma ray astronomy:



World-wide cooperation

27 countries

80 parties

**348 FTEs** 

1127 scientists









## The zoo – part 1



#### Low-energy section:

Large Size Telescopes LST

#### **Core-energy array:**

- Medium Size Telescopes MST
- Schwarzschild-Couder Telescopes SCT

#### **High-energy section:**

- 1-Mirror Small Size Telescopes 1M-SST
- 2-Mirror Small Size Telescopes 2M-SST





## The zoo – part 2









## The Large Size Telescope





CFRP space frame structure with special end-pieces (T-Igel)

Steel tubes at the very bottom

#### **HOT NUMBERS**

Diameter: 23m; f/D = 1.2; f=28m

Collecting area: 389 m<sup>2</sup>

Dish profile: Parabolic

Deformation of mirror dish: < 10mm

**Active mirror Control** 

Fast rotation: 360° / 40sec

Tracking accuracy: 20 arcsec

Total weight: 70 tons

Grand total of 4 (+4) telescopes needed





## The Large Size Telescope





The telescope is studied by a consortium of German-Spanish-French Institutes and Universities.

Prototyping activities planned/ongoing

PI: Prof. Masahiro Teshima – MPG masahiro.teshima@mppmu.mpg.de

Complex dual-rail and bogie system to move the telescope and to hold it against wind storm







## The Medium Size Telescope



#### **HOT NUMBERS**

Diameter: 12m; f/D = 1.3; f=16m

Collecting area: 100 m<sup>2</sup>

**Active Mirror Control** 

Camera weight: 2.5 ton

Fast rotation: 360° / 78sec

Total weight: 75 tons



Grand total of 25 (+15) telescopes needed





## The Medium Size Telescope





Steel structure made by assembled tubes (bolted joints)

The column hosts the azimuth drives and electric cabinets

The telescope is studied by a consortium of German-French-US Institutes and Universities

<u>Prototyping activities planned/ongoing</u>

PI: Prof. Stefan Schlenstedt – MPG

stefan.schlenstedt@desy.de







#### The Schwarzschild-Couder Telescope





Truss structure made by assembled steel tubes (Open Joist Trusses)

Use the same column and driving system as MST

#### **HOT NUMBERS**

Dual-Mirror design with:

M1 diameter: 9.66 m

M2 diameter: 5.42 m

f/D = 0.58

Collecting area: 50 m<sup>2</sup>

Camera weight: 0.7 ton

Active Mirror Control (M1 and M2)

Total weight: 40 tons

Grand total of 36 telescopes needed





#### The Schwarzschild-Couder Telescope



The telescope is studied by a consortium of US Institutes and Universities

Prototyping activities planned/ongoing

PI: Prof. Vladimir Vassilliev – UCLA

vvv@astro.ucla.edu









#### The 1-Mirror Small Size Telescope





#### **HOT NUMBERS**

Diameter: 4m; f/D = 1.4; f=5.6m

Collecting area: 10 m<sup>2</sup>

**Active mirror Control** 

Camera weight: 0.3 ton

Total weight: 10 tons

**Grand total of 70 telescopes needed** 

This design is similar to a scaled-down MST and uses the same driving system





#### The 1-Mirror Small Size Telescope



The telescope is studied by a consortium of Swiss and Poland institutes.

Prototyping activities planned/ongoing

PI: Prof. Teresa Montaruli – Uni Geneve

teresa.montaruli@unige.ch









#### The 2-Mirror Small Size Telescope





It uses the same optical layout of the SCT, but pushing on the field of view instead of the angular resolution

#### **HOT NUMBERS**

Dual-Mirror design with:

M1 diameter: 4 m

M2 diameter: 2 m

f/D = 0.5

Collecting area: 10 m<sup>2</sup>

Active Mirror Control (M1 and M2)

Total weight: 20 tons

Grand total of 70 telescopes needed





#### The 2-Mirror Small Size Telescope



The telescope is studied by the Paris Observatory

Camera

Prototyping activities planned/ongoing

PI: Prof. Helene Sol – OBS Paris-Meudon

Helene.Sol@obspm.fr

Mirror M2



Tower





#### The 2-Mirror Small Size Telescope





The telescope is studied by INAF in the contest of ASTRI, a flagship project of MIUR

Prototyping activities planned/ongoing

PI: Prof. Giovanni Pareschi – OA Brera giovanni.pareschi@brera.inaf.it





## Electrical equipment



#### The telescope control hardware include at least:

- safety and health monitoring;
- active mirror control;
- drive systems;
- electrical cabinets and cabling
- more and more other...











PI: Thierry Stolarczyk, CEA Irfu

Thierry.stolarczyk@cea.fr



South ~ 10 km<sup>2</sup> North ~ 1 km<sup>2</sup>

Reasonably flat, but landscaping anyway expected

Communication Gbit/s netw.

Foundations to the seasons of the se

No particular geological/hydrological conditions







#### **SOUTHERN SITE:** 4x LST + 25x MST + 36 SCT + 70x SST = 135 telescopes



#### **HOT NUMBERS**

Roads and parking

Main: 13.2 km

Secondary: 17.2 km

Parking: 4400 m<sup>2</sup>

Central area: 30000 m<sup>2</sup>

Buildings: 3x

Power: 4 MW peak

Data Network: 1 Gbit/s









#### **NORTHERN SITE:** 4x LST + 15x MST = 19 telescopes



#### **HOT NUMBERS**

Roads and parking

Main: 3.0 km

Secondary: 0.8 km

Parking: 2000 m<sup>2</sup>

Central area: 30000 m<sup>2</sup>

Buildings: 3x

Power: 2 MW peak

Data Network: 1 Gbit/s











#### **OPERATION BUILDING**

Personnel: 12-15 persons

Working area: 832 m<sup>2</sup>

Power: consumption depends on

computers (ROM 100 kW)









#### **TECHNICAL BUILDING**

Inside working area: 2000 m<sup>2</sup>

Outside working area: 2800 m<sup>2</sup>

Location: entrance of site

Main labs:

- unloading and assembly
- storage
- workshops
- clean and dark rooms
- coating chambers









#### **RESIDENCE BUILDING**

Living area: 880 m<sup>2</sup>

Max occupancy: ~ 30 pers.

Location: far enough to avoid disturbance

(light)

Additional services:

- reception/guard apartment
- medical unit









Data network architecture

# Power network architecture Buildings Operation Technical Residence **★** Transformer Grid power Peripheral loop Medium loop

+ Diesel/gas generators