

Overview of SPICA Coronagraph Instrument (SCI)

7th Feb., 2012 Prepared by Keigo Enya, & SCI team + H. Matsuhara

Our Science Cases with SCI: Summary

	Science case	λ (μm)	Obs. mode	Category
(1)	Planet formation process revealed by thermal history	4 – 12	Spectroscopy	Exoplanet
(2)	Atmospheric structure of Jovian exoplanets	4 - 20	Spectroscopy	Exoplanet
(3)	Constraining heavy element abundance of Jovian exoplanets	4 – 20	Spectroscopy	Exoplanet
(4)	Solid matter in planet-forming systems	6-28	Spectroscopy	ISM
(5)	Formation and supply of solid matter from old stars to	6-28	Spectroscopy,	ISM
	the ISM		Imaging	
(6)	Fueling nearby AGN through dusty torus	6-28	Spectroscopy	AGN
(7)	Interaction between relativistic jets and dust	6-28	Spectroscopy	AGN
(8)	H ₂ and He in the atmosphere of Jovian exoplanets	10 – 28	Spectroscopy	Exoplanet
(9)	Direct detection and characterization of icy giant exopalnets	10 - 28	Imaging	Exoplanet
(10)	Co-evolution of AGNs and host galaxies	12 - 28	Spectroscopy	AGN

This presentation features exoplanets science cases, (1) (8) and (9).

Planet Formation History revealed by thermal history (2/2)

- Science Requirement
 - Wavelength range: 4 12 μm to cover CO (4.7 μm), CH₄ (6.5 μm, 7.7 μm), NH₃ (6.1 μm, 10.5 μm), H₂O 6.2μm
 - Spectral Resolving Power: R=200
 - to characterize the temperature of Jovian exoplanets' atmosphere
 - Sensitivity:
 - < 3 ×10⁻⁵ Jy @ λ = 4 μ m, < 5 ×10⁻⁵ Jy @ λ = 12 μ m to detect ~<1Gyr old 1 10 M₁ Jovian exoplanets
 - Coronagraphic requirement:
 - IWA < 3 λ /D, OWA > 20 λ /D
 - * IWA: 7.5 AU @ d=10 pc, λ = 4 μ m, 22.5 AU @ d=10pc, λ = 12 μ m
 - * OWA: 50 AU @ d=10pc, λ = 4 µm, 150 AU @ d=10pc, λ = 12 µm Contrast : <10⁻⁵ @ 4um. <10⁻⁴ @12um after PSF subtraction

H₂ and He in the atmosphere of Jovian exoplanets (2/2)

Science Requirement

- Wavelength range: 10 28 μm
 - to cover broad CIA features of H_2 H_2 and H_2 He
- Spectral Resolving Power: R=20 50
 - to characterize broad CIA features of H_2 H_2 and H_2 He

• Sensitivity:

- < 5 × 10⁻⁵ Jy @ λ = 10 μ m, < 1 × 10⁻⁴ Jy @ λ = 28 μ m for 1Myr Gyr old, 1 10 M_J Jovian exoplanets
- Coronagraphic requirement:
 - IWA < 3 λ /D, OWA > 20 λ /D
 - Contrast : < 2×10^{-5} @ 10um. < 510^{-4} @12um after PSF subtraction

Direct detection and characterization of icy giant exoplanets (2/2)

- Science Requirement
 - Wavelength range: 10 28 μm

to cover thermal IR emission from cool exoplanets

Spectral Resolving Power: R=2 - 5

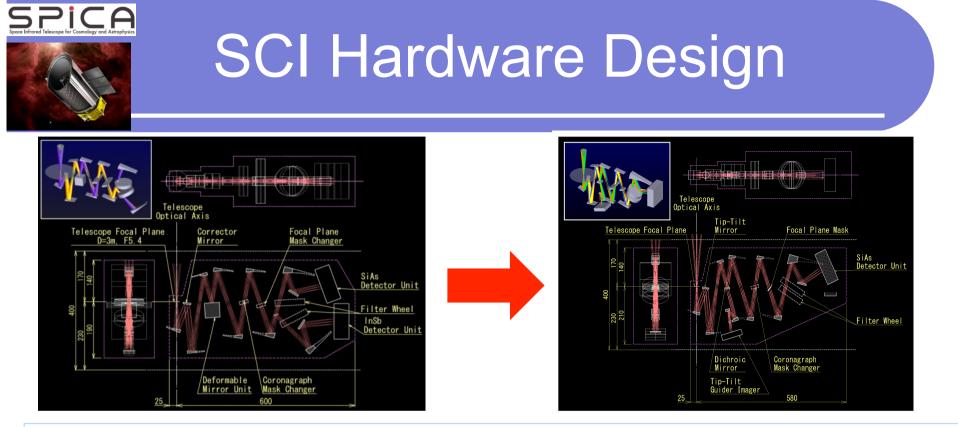
to detect by the imaging mode.

• Sensitivity:

< 5 ×10⁻⁶ Jy @ λ = 10 μ m, < 1 ×10⁻⁵ Jy @ λ = 28 μ m for 1Myr – Gyr old, 1 – 10 M_J Jovian exoplanets

• Coronagraphic requirement:

IWA < 3 λ /D, OWA > 20 λ /D


Contrast : <10⁻⁴ @ 10um. <10⁻⁴ @28um after PSF subtraction

Instrument Capabilities

Observation mode	Coronagraphic spectroscopy			
	Coronagraphic imaging			
Wavelength coverage	$4-28 \ \mu m$			
Coronagraph method	Binary pupil mask			
Inner Working Angle Outer Working Angle	$ \begin{array}{c cccc} \underline{Mask-A} & \underline{Mask-B} & \underline{Mask-C} \\ \hline 3.3 \ \lambda/D & 1.7 \ \lambda/D & 4.4 \ \lambda/D \\ \hline 12 \ \lambda/D & 6.5 \ \lambda/D & 32 \ \lambda/D \end{array} $			
Spectral Resolution	200 (spectroscopy mode)			
Filters and Grisms	Installed in the tandem-series wheels			
	Wheel 1: Band-pass filters or ND or Blank			
	Wheel 2: Grism or ND or Blank			
Field of View (FoV)	$1' \times 1'$ at the center of the FoV of the telescope			
Detector	$1k \times 1k$ Si:As array (Raytheon)			
Sensitivity	Example: 5σ , 1h integration, w/o speckle noise, low zodi. case.Case of R = 5: (mJy)Case of R = 200: (mJy) 5×10^{-4} ($\lambda = 5 \ \mu m$) 2×10^{-2} ($\lambda = 5 \ \mu m$) 2×10^{-3} ($\lambda = 10 \ \mu m$) 3×10^{-2} ($\lambda = 10 \ \mu m$) 5×10^{-3} ($\lambda = 20 \ \mu m$) 4×10^{-2} ($\lambda = 20 \ \mu m$)			
Contrast	Example: 5σ , 1h integration, K5V primary star, $3.3 - 12 \lambda/D$ average.Limit with PSF subtractionRaw contrast limit $1.4 \times 10^{-6} (\lambda = 5 \mu\text{m})$ $3.6 \times 10^{-4} (\lambda = 5 \mu\text{m})$ $2.8 \times 10^{-6} (\lambda = 10 \mu\text{m})$ $1.6 \times 10^{-4} (\lambda = 10 \mu\text{m})$ $3.2 \times 10^{-5} (\lambda = 20 \mu\text{m})$ $1.6 \times 10^{-4} (\lambda = 20 \mu\text{m})$			

- Optical configuration optimized
- Mask design has been studied extensively
- Simplifications!
 - No short channel
 - No deformable mirror (thanks to study of wavefront error, telescope design, and scientific requirement: contrast: $10^{-6} \rightarrow 10^{-4}$)
- ➔ Technical feasibility much improved