WATER IN PROTO-PLANETARY DISKS: future perspectives with SPICA

Linda Podio

I. Kamp, C. Codella, S. Cabrit, B. Nisini, C. Dougados, G. Sandell, J.P. Williams, L. Testi, W.-F. Thi, P. Woitke, R. Meijerink, M. Spaans, G. Aresu, F. Menard, C. Pinte & the GASPS team

SPICA science goals

1. What are the conditions for planet formation and the emergence of life ?

2. How does the Solar System work?

3. How did the Universe originate and what is it made of?

PROTOPLANETARY DISKS are the birthplace of planets

the study of their physical and chemical structure is fundamental to comprehend the formation of our own solar system & extra-solar planetary systems

different lines probes the physical/chemical conditions of the gas located in different regions of the disk

What is the origin of WATER ON EARTH ? MA

 $1 M_{\odot} = 5.9722e27 \text{ g}, 1 \text{ earth ocean} = 1.5e24 \text{ g} = 2.5e-4 M_{\odot}$

Matsui & Abe 1986 Drake 2005 Morbidelli+ 2000 Hartogh+ 2012

ISM

Jupiter family

10-5

J

S

U

Ν

Oort cloud

"WET accretion" hydrous mineral in the planetesimals from which Earth formed

water location & mass in protoplanetary disks

What we know about H₂O in disks

H20888H2010077 1

Equilibrium between photodesorption and -dissociation in outer disk (Dominik et al. 2005): H2Ogas ~fraction×H2Oice

theory Evaporation in inner disk (<3 AU)

HEQgas fraction×H2Oice H2Ogas/H2Oice 77 Freeze out in outer disk (> 3 AU)

H2OgayH2Oice 4

Fraction

Haction

H20 gas fraction × H2Oice H20 gas fraction × H2Oice

WATER in PROT DISKS before HERSCHEL

High-exc WATER from the HOT INNER DISK

Water from the COLD OUTER DISK

HERSCHEL: A WINDOW to DETECT WATER in PROT DISKS

ESAs fourth cornerstone mission

3.5m mirror – 55-672 um Launched 14 May 2009 Orbit around L2 Mission lifetime 3+ yrs (GT&OT KP,OT1,OT2)

3 instruments: PACS, SPIRE, HIFI

Guaranteed and Open Time Key Programs covering disks:

WISH – water in star forming regions (PI: van Dishoeck)
DIGIT – Dust, ice, and gas in time (PI: Bergin)
GASPS – Gas in protoplanetary systems (PI: Dent)
DUNES – debris disk program (PI: Eiroa)
DEBRIS – debris disk program (PI: Matthews)

HOT WATER from INNER DISK

Meeus + GASPS 2012

detected in 8 TTSs in Taurus ...

85.0

... and in 1 Herbig Ae/Be !!

OHTIS HO71000 H,042312 H.070001 OHT 10818701 lux $(10^{16} \mathrm{W m}^2 \mu \mathrm{m}^3)$ Flux $(10^{16} \text{ W m}^2 \mu \text{m}^3)$ ²lux (10¹⁶ W m² µm⁻¹) Flux (10¹⁶ W m⁻² µm⁻¹) Fedele + DIGIT/WISH 2013 ᡊᡛᡃ᠋᠘ᡗᠧ᠇ 63.0 63.1 63.2 63.3 63.4 63.5 70.5 71.0 71.5 72.0 72.5 78.5 79.0 84.0 84.2 84.4 84.6 84.8 $\lambda (\mu m)$ $\lambda (\mu m)$ λ (μm) $\lambda (\mu m)$

Both high- low-exc H₂O emission from jet-driving sources

DG Tau

jet + disk + envelope

Atomic emission [OI], [CII] lines extended along "optical-jet" axis, blue- red-shifted

Molecular emission H2O, high-J CO lines spectrally and spatially unresolved with PACS !! (DV > 80 km/s, 1 spaxel = 9.4" x 9.4")

H2O from jet, disk, or envelope ?

follow-up Herschel/HIFI observations 7 sources in H₂O, CO 10-9, [CII] (PI: L. Podio)

Herschel/HIFI observations of DG Tau low-exc WATER emission from OUTER DISK !!!!

DISK model: the region emitting low-exc H2O lines

<u>Pro</u>toplanetary <u>Di</u>sk <u>Mo</u>dels (ProDiMo) Woitke+ 2009, Kamp+ 2010, Thi+ 2011 Aresu+ 201, Meijerink+ 2012 uses global iterations to consistently calculate physical, thermal, chemical structure of protoplanetary disks. large chemical network: 120 species, ~1650 reactions

H2O 557, 1113 GHz (HIFI) H2O 179.5um (PACS) emitted by same disk region

R = 10 - 90 AUT = 50 - 600 K < nH > = 1e8 - 1e10 cm⁻³

--> LTE emission --> optically thick lines

	H ₂ O	
formation	& destruction	reactions

1	31	55 NN: H2 + OH	->H2O +H
12	1160	3563 DR: H3O+ + e-	-> H2O + H
15	1232	4052 AD: H2 + O-	-> H2O + e-
16	1246	4084 RA: H + OH	-> H2O + PHOTON
17	1463	10273 NN: H2exc + OH	-> H2O + H

4 373 1192 IN: C+ + H2O -> HOC+ + H 14 816 2951 CE: H+ + H2O -> H2O+ + H 16 1300 4205 PH: H2O + PHOTON -> OH + H

observed line fluxes in agreement with predicted ones within a factor 2

Model uncertainty related to: collisional rates, chemistry on dust grains (e.g. desorption and adsoprtion rates) details of radiative transfer **Kamp+ 2013**

Estimating the WATER RESERVOIR in the DISK

dust grain size distribution / disk dust mass to reproduce cont emission at 1.3, 2.8 mm (Isella+ 2010):

"low dust opacity " model

"high dust opacity " model

 $M_{disk} = 0.1 \text{ M}_{\odot}$ $H_2O_{gas} \sim 1e-6 \text{ M}_{\odot} \sim 0.37 \text{ M}_{\oplus}$ $H_2O_{ice} \sim 3e-4 \text{ M}_{\odot} \sim 100 \text{ M}_{\oplus}$

 $M_{disk} = 0.015 \text{ M} \odot$ $H_2O_{gas} \sim 1.7e-7 \text{ M} \odot \sim 0.06 \text{ M} \oplus$ $H_2O_{ice} \sim 2e-5 \text{ M} \odot \sim 7 \text{ M} \oplus$

Since H₂O lines are optically thick disk and water masses are constrained with one order of magnitude uncertainty

 $M_{disk} = 0.01 - 0.1 M_{\odot}$ $\geq Minimum Mass of the Solar Nebula (MMSN) before planets formation$

 $M(H_2O) \sim 7 - 100 M_{\oplus} \sim 1e4 - 1e5$ earth oceans

supports the scenario of impact delivery of water on terrestrial planets by means of icy bodies forming in the outer disk

ONLY 2 detections of WATER from the outer disk !!

d = 50pc, ~10 Myr $Macc \sim 1e-9 M_{\odot}/yr \rightarrow f_{UV} = L_{UV}/L^* = 0.018$ H₂O sub-thermally excited in a region at T ~ 20-40 K disk: Rout=200 AU, Mdisk=0.003-0.02 Mo M (H₂O) ~ 1.5 M⊕

d = 140pc, ~2.5 Myr $M_{acc} \sim 5e-7 \ M_{\odot}/yr \rightarrow f_{UV} = L_{UV}/L^* = 0.2$ H₂O excited close to LTE in a region at T ~ 50-600 K disk: Rout=100 AU, Mdisk=0.015-0.1 Mo M (H₂O) ~ 7-100 M⊕ a few-100x H₂O than TW Hya !

DG Tau

WATER in protoplanetary disks: the future with SPICA

SPICA (T~6 K) will be up to 2 orders of magnitude more sensitive than Herschel ! SAFARI: ~2e-19 W/m², 5 sigma, 1 hr Will allow a **systematic search of low-exc H₂O line at 179.5um** in protoplanetary disks

Herschel: clear detection of low-exc H2O only in two protoplanetary disks:
1. A closeby source (TW Hya, Hogerheijde+ 2011)
2. A source associated with very intense UV and X-ray field (DG Tau, Podio+ 2013)

<u>Mid-IR Camera/Spectrometer: high-R (~20 000 – 30 000) spectra at 5-38um</u> Will allow recovering <u>H2O lines spectral profile !</u>

High-exc H₂O lines (E_{up} ~ 1000-5000 K) were spectrally unresolved with Herschel/PACS and Spitzer Only partially resolved from ground with VLT-VISIR (Pontoppidan+ 2010b)

<u>Observations of HD 1-0, 2-1 at 112, 56um \rightarrow to constrain M_{disk}</u>

Present estimates of Mdisk are based on:
dust thermal emission ... BUT assumption on dust opacity & dust-to-gas ratio !
CO emission lines → but they are optically thick !

HD is a good tracer of gas in the disk because it follows the distribution of H₂ (Bergin+ 2013)

