Primary CMB

Michele Liguori University of Padova, INFN-Padova, INAF-OAPD on behalf of the Italian CMB community

Primordial CMB: formation

Scientific goals

Observables

- Direction-dependent temperature fluctuations w.r.t. to T=2.725 K blackbody
- Polarization fluctuations generated by Compton scattering at recombination
 - Polarization is a spin-2 field. Can be decomposed in "gradient-curl". Gradient part (E-mode) is generated by scalar perturbation. Primordial curl (B-mode) is a smoking-gun signature of primordial Gravitational Waves (GW), i.e. Inflation.

Small deviations from perfect blackbody, in the frequency domain.
 Spectral distortions generate a very promising, yet nearly completely unexploited observational window!

Current status

- Temperature: as long as *primordial* fluctuations are concerned, Planck has essentially fully and optimally extracted all information.
- **Primordial E-mode:** not optimal yet, error budget dominated by instrumental noise. **Important gains are possible in the future**.
- Primordial B-mode: undetected, best upper limits from *Planck*+BICEP2/Keck Arr.
 Primary goal for future CMB experiments.
- Spectral distortions: yet undetected. They are expected in standard Cosmology, from a variety of mechanisms.

Testing Inflation: power spectra.

• The primordial curvature perturbation from inflation is described by a nearly Gaussian random field with nearly scale invariant spectrum

$$P_{\varsigma}\left(k\right) = A_{\varsigma}\left(\frac{k}{k_{*}}\right)^{n_{\varsigma}-1}$$

Spectral index, n_s. Describes slope. Defines deviation from perfect scale invariance

Inflation also predicts a background of GW with spectrum

- Detecting r>0, via B-mode detection would be a smoking-gun confirmation of Inflation
- We can constrain slow-roll inflationary models through measurements of n_s and r (from CMB power spectra).

The Inflation smoking-gun: B-modes

- The search for B-modes will be the main target for most future CMB surveys.
- Current constraints r < 0.07, (95% C.L.), Planck + BICEP2 + Keck Array.
- From the ground, claim: \Deltar ~ 0.01 maybe achievable.
 No self consistent result at present!
- Main obstacles: astrophysical foreground, B-mode lensing signal.
- Best remedies: full-sky, wide multi-frequency coverage => <u>SPACE</u>
- Next generation of space missions aiming for ∆r ~ 0.001
- Energy scale tested is ~12 order of magnitude, or more, larger than what probed in particle accelerators!
- Lyth bound $\frac{\Delta\phi}{M_{\rm P}} = \int \mathrm{d}N \sqrt{\frac{r}{8}}$ implies trans-Planckian excursion for r > 2 x 10⁻³

Constraining Inflation: the n_s-r plane

Picture from J. Martin et al. 2013

Current constraints on single-field slow-roll Inflation

Model	Parameter	Planck TT+lowP	Planck TT+lowP+lensing	Planck TT+lowP+BAO	Planck TT, TE, EE+lowP
ΛCDM+r	ns	0.9666 ± 0.0062	0.9688 ± 0.0061	0.9680 ± 0.0045	0.9652 ± 0.0047
	$r_{0.002}$	< 0.103	< 0.114	< 0.113	< 0.099
	$-2\Delta \ln \mathcal{L}_{max}$	0	0	0	0
$\Lambda \text{CDM}+r$ + $dn_s/d\ln k$	ns	0.9667 ± 0.0066	0.9690 ± 0.0063	0.9673 ± 0.0043	0.9644 ± 0.0049
	$r_{0.002}$	< 0.180	< 0.186	< 0.176	< 0.152
	r	< 0.168	< 0.176	< 0.166	< 0.149
	$dn_s/d\ln k$	$-0.0126^{+0.0098}_{-0.0087}$	$-0.0076\substack{+0.0092\\-0.0080}$	-0.0125 ± 0.0091	-0.0085 ± 0.0076
	$-2\Delta \ln \mathcal{L}_{max}$	-0.81	-0.08	-0.87	-0.38

Planck 2015 results. XX. Constraints on inflation.

n_s-r: foreseeable improvements

Forecasts for PRISM: arXiv:1306.22951

Vast improvement achievable from future polarization data (TE, EE, BB)

More inflationary parameters: running

Escudero et al. 2016, arXiv: 1509.05419

Beyond power spectra: non-Gaussianity

Primordial non-Gaussianity. Many inflationary scenarios (notably, multi-field Inflation) predict small, model-dependent deviations from Gaussianity. Additional information in 3-point (bispectrum) and 4-point (trispectrum) correlation functions.

- Fit primordial bispectrum (trispectrum) template to the data and measure the degree of correlation via a dimensionless parameter f_{NL} (g_{NL} , τ_{NL}).
- Large f_{NL} for a given shape selects specific scenarios. E.g. large local f_{NL} would rule out standard single-field models.

Non-Gaussianity: foreseeable improvements

- Still room for improvement on NG parameters from future CMB data. Achievable by increasing sensitivity for E-mode.
- A cosmic variance dominated E-mode reconstruction up to I_{max} ~ 3000 (PRISM, CMBpol) allows an improvement in f_{NL} error bars by a factor ~3 for <u>all</u> shapes (no other cosmological observable can do that, except futuristic 21 cm surveys).
- Similar improvement expected for trispectra (can test consistency relations).
- Allows to test alternatives to Inflation (e.g. ekpyrosis)
- All these measurements require full-sky, high-sensitivity, accurate foreground subtraction.

CMB spectral distortions: a new window

- Power spectrum and running spectral index (Khatri and Sunyaev 2013, Cabass, Melchiorri, Pajer 2016)
- If μ-*anisotropies* are measured (no absolute calibration needed):
 - ✓ Tµ correlation: primordial local f_{NL} (or other squeezed bispectra) (Pajer and Zaldarriaga 2013)
 - $\checkmark~\mu\mu$ correlation: primordial local trispectrum, τ_{NL}
 - TTµ bispectrum: primordial local trispectrum, g_{NL} (Bartolo, ML, Shiraishi 2016)

- With "PIXIE x 3", either detection of μ , or detection of running
- Cosmic variance dominated observation of μ anisotropies (futuristic) can achieve, for standard local shape f_{NL},τ_{NL} << 1 (local) and g_{NL} ~ a few (local), as well as testing several other models and scenarios.
- Specific models produce enhanced signals that can be observed also with PIXIE-like sensitivity.

Tests of isotropy: CMB anomalies

- Three main "families": lack of large angle correlation, multipole alignments, Hemispherical asimmetry. All on large scales.
- Statistical fluke, "a posteriori", look elsewhere, or real? Cosmological or not? Primordial or late time?

• Ways forward :

- \checkmark Find primordial models explaining the anomalies and fit parameters.
- ✓ Cross-check temperature anomalies using e.g. CMB polarization.

Parity breaking

- If fundamental Physics is **parity-breaking** in the electromagnetic sector, there are **observational consequences**, e.g.:
 - ✓ Non-vanishing EB and TB
 - ✓ Cosmic birefringence (rotation of polarization angle)
 - ✓ Parity-odd bispectra
- These signatures were all tested using Planck data.
 Birefringence *Planck* paper in preparation. *Planck* statistical uncertainty on rotation angle ~ 0.03 deg
- Better polarization data can lead to significant improvements
 A CORE-like survey can improve statistical uncertainty by
 a factor ~ 10

Primordial magnetic fields

- **Primordial Magnetic Fields (PMF)**, could be generated in the Early Universe by different mechanisms, such as inflation or phase transitions.
- The study of PMF may open a new observational window on the early universe.
- At later times, these PMF could have contributed to the generation of the observed large scale magnetic fields in galaxies and clusters.
- PMF leave different signatures on the CMB anisotropies, in temperature, polarization and non-Gaussianities, including parity-breaking features. Therefore the CMB is the best laboratory to investigate and constrain PMF.
- Current constraints at nG level (*Planck* 2015 results XIX, Paoletti and Finelli, 2011, 2013).
- Future polarization surveys can improve by one order of magnitude.

Topology

- Multi-connected Universe => matched circles in the CMB sky
- Accurate polarization maps allow important cross-check of temperature searches and accuracy improvement.
- Sensitivity improvements, full sky and foreground subtraction are again crucial

Summary

- CMB studies projected Cosmology into a new, data-driven, high-precision era.
- Much information still awaits to be extracted. For primary CMB:
 - ✓ Polarization (primordial B-mode spectrum, accurate E-mode maps)
 - ✓ Spectral distortions
- This additional information, would allow to, e.g.:
 - Strongly improve our understanding of the Early Universe (e.g. tight constraints on Inflation)
 - ✓ Possibily provide a smoking-gun evidence of Inflation
 - ✓ Test energy scales well above particle accelerators' reach
 - Test fundamental assumptions of standard Cosmology
 - ✓ Search for new Physics

(and <u>much</u> more if we consider late-time Physics, secondary effects etc., see coming talks)

 Accurate foreground subtraction (i.e. wide frequency coverage), tight control of systematics, high sensitivity and full sky coverage are key to a fully successful achievement of the above scientific goals => <u>SPACE</u>

