KIDs- Kinetic Inductance Detectors for CMB

Maria Gabriella Castellano

CNR-IFN (Istituto di Fotonica e Nanotecnologie)

on behalf of the Italian CMB community

- KIDs: already used in astro experiments worldwide
- KIDs working principle
- KIDs technology fabrication issues
- State-of-the-art in the italian CMB community

- KIDs are Superconducting detectors, born in 2003 (JPL+Caltech)
- Detection range from submm-FIR (continuum) to optical- X (single photon capability)
- Suitable for large arrays and easily multiplexable

Already in use in many experiments for astronomy and astrophysics, ground-based or balloon-borne, in the sub-mm range:

- NIKA (300 KIDs) and NIKA2 cameras (4000 KIDs) for the IRAM telescope, 150-250 GHz
- Multiwavelength Sub/millimeter Inductance Camera (MUSIC) array (2000 KIDs) for the Caltech Submillimeter Observatory 150, 230, 290, and 350 GHz.
- Next Generation Blast (3000 KIDs)
- A-MKID camera for the Apex telescope

KID working principle

KIDs are:

- superconductive microwave LC resonators (at 1-10 GHz)
- high Q factor (> 10^4)
- made with a superconducting thin film (AI, Ti, AI/Ti,...)
- coupled to a feedline (coplanar waveguide)
- working at cryogenic temperature (say <1K, depending on material)

Advantages:

- only one thin film layer; easy fabrication

KID working principle

- "kinetic inductance" in a superconductor is determined by the number of Cooper pairs
- Cooper pairs are broken by impinging photons (if $h_V > 2e\Delta \Delta$ is the superconducting gap) and change the kinetic inductance
- this produces a change in the resonance frequency and Q

- use feedline to excite resonance and monitor changes
- output signal \rightarrow fast pulse in amplitude/phase
- optical coupling via antenna or direct absorption

KID working principle

- many resonators (hundreds) can be coupled to the same feedline
- each with a slightly different resonance
- all together excited by a frequency comb through the same feedline

Electronics:

Advantages:

- -easy multiplexing (frequency domain)
- -reduced wiring and electronics
 - \rightarrow suitable for large arrays (thousands pixels)
- relatively simple readout

KID fabrication issues

Choose material:

- superconducting gap $\Delta \sim 1.75$ KTc such that $h_V > 2e\Delta$ in the frequency range of interest: Al, Ti, Ti/Al, Ti/TiN,
- resistivity must be suitable for impedance matching

Choose thickness:

- small thickness gives high inductance responsivity
- but changes film properties and Tc

Examples of films fabricated at CNR and tested at Sapienza

W-band: 75-110 GHz		Materials	Thick (nm)	T _c (K)	v _c (GHz)	Band (GHz)
		AI	20	1,43	104,0	150
		Al	40	1,31	95,5	90
		Al	80	1,28	93,2	90
M.G	M.G. Castellano – KIDs: k – ASI 30 March 2016	Ti/Al	10/25	0,85	65,0	90
agenzia spaziale – A italiana		TiN _x	under investigation			

KID fabrication issues

- Substrate: high resistivity silicon wafer (up to 4 inches diameter)
- Thin film deposition (by evaporation/ sputtering/ reactive sputtering)
- Pattern transfer: through resist mask and electron-beam lithography (100 keV e-gun)
- Selected removal of the film: two techniques
- 1) Lift-off (additive process)

EBL Leica/Vistec EBPG 5000

M.G. Castellano – KIDs: kinetic inductance detectors - New challenges in Cosmic Microwave Backgroud studies - ASI 30 March 2016

KID fabrication issues

Wafer dicing

Ultrasonic bonding in chip carrier

The fabrication facility at CNR-IFN, Rome

Cleanroom 300 m², class 100-1000 (ISO 5-6)

M.G. Castellano – KIDs: kinetic inductance detectors - New challenges in Cosmic Microwave Backgroud studies - ASI 30 March 2016

KIDs in Italy

Tests done at Sapienza on Ti/Al films by CNR

- Al KIDs succesfully tested down to 95 GHz
- Ti/Al KIDs are being developed for W-band; first tests show sensitivity down to 65 GHz

KIDs in Italy

- RIC project of INFN group V: first array of KIDs for mm-waves in Italy. Design and testing in Roma1, processing in FBK Calvo et al. 2010 Exp.Astron. (2010) **28**: 185-194.
- Collaboration between IFN-CNR and Sapienza continuing despite of the lack of official resources, and producing improved quality LEKID detectors.
- Recent proposals to ASI:
 - «Nuove idee di strumentazione scientifica per missioni future di Osservazione ed Esplorazione dell'Universo» – KIDS proposal, recoverec by ASI CdA (2015).
 - WP within Premiale ASI 2015 Approved by Government.
- Recent proposals to INFN:
 - «6 progetti di ricerca per giovani ricercatori/ricercatrici» (2015): A. Cruciani, Roma1, MoBiKID: Characterization of KIDs for space, started.
- Possible uses of Italian KIDs:
 - **OLIMPO** (as validation test or even as main arrays; important qualification for space missions)
 - Sardinia Radio Telescope (array of 90 GHz KIDs)
 - Forthcoming **M5 CMB** space mission, Italy can provide part of the focal plane and readout, if KIDs technology selected.

CNRIFN

Conclusion

- KIDs are successfully used worldwide for astronomy and cosmology
- In Italy, high-quality Al and Ti/Al KIDs are produced and operated
- With Ti/Al films, the operating frequency of 65 GHz, within the W-band, has been reached
- Ready for implementation in forthcoming experiments

CNRIFN

