Science exploitation of CMB data

Paolo Natoli Università di Ferrara and INFN on behalf of the Italian CMB community

- Rich, complex datasets for many science targets
- State of the art
- Role and expertise of the Italian community
- Open issues and criticalities

Rich science, faint signals, wide angular range

Paolo Natoli – Science Exploitation of CMB Data – New Challenges in CMB studies - ASI 30 March 2016

Exploitation issues in brief

- 1. Long list of science targets in cosmology and fundamental physics
- 2. Wide range of angular scales:
 - Large datasets: full sky maps (Mpix)
- 3. Signals ranking from faint to extremely faint
 - Large datasets: many detectors, long observations (Tb to Pb)
- 4. Large not huge. But analysis is *extremely* challenging:
 - Statistically optimal techniques needed: dense problem
 - Error budget dominated by systematics

CMB data analysis pipeline

- "Exact" treatment totally unfeasible
 - Too costly (N_{pix}^{3} or worse, for megapixel maps)
 - Error budget dominated by systematics, no analytic model cheap and easy!
- Have to rely on Monte Carlo methods
 - Computational cost dominated by simulation/map making level.
 - Scales as timeline length times number of simulations
 - Propagating systematics through MC is very costly and not always straightforward (c.f. Planck)
- Heavy dependence on supercomputers. Needs High Performance Computing:
 - Low latency, high bandwidth communication
 - Significant storage, fast I/O
 - No grid or share-at-home!

Planck Full Focal Plane simulations

- 1. End to end effort for all Planck Channels [arXiv:1509.06348]
- Major computational burden was set of 10⁴ Monte Carlo maps: 1 million CPUdays on world class super computer (NERSC and CSC)
- 3. Supported Planck cosmological analysis

Projected computional needs

Projected computional needs

- 1. Computational cost driven up by sheer number of detectors packed in focal plane.
- 2. Moore's law provides some margin *but*
- 3. Untold part of the story: sheer size of data limits human direct intervention. Automatization is a must.

- 1. Very Good tradition/expertise in CMB data analysis.
 - a. Heritage from earlier and current experiments (BOOMERanG, Maxima, Beast, Planck)

Expertise of the Italian community

What	Where	How well (vs. international top of class)	Remarks
Systematics sims	Milano, Roma I	Very good	
Signal, noise, sims	Distributed (Planck Level-S)	Good but	Polarized foregrounds?
Map Making and calibration	Roma II, ASDC, Trieste	Good	Projected comput. cost?
Component separation	Ferrara/Bologna, Trieste	Good	Polarization still an issue (worldwide)
Harmonic analysis/Power Spectrum	ASDC Ferrara/Bologna, ASDC	Very good	
CMB likelihood and parameters	Ferrara/Bologna, ASDC, Roma I	Good but	Small scale expertise
Non likelhood (primordial NG, birefringence etc)	Padova, Ferrara/Bologna, Roma II	Good	
Delensing	?	To be built	Theoretical expertise present

- 1. Very Good tradition/expertise in CMB data analysis.
 - Heritage from earlier and current experiments (BOOMERanG, Maxima, Beast, Planck)
- Computational needs mostly outsourced, NERSC in California and CSC in Finland (to lesser extent)
 - Very good "internal" support to produce timeline and maps (e.g. Planck/DPC SGS)
 - Little support for Monte Carlo analysis (weakness to be overcome).
- 3. A new generation has to gain expertise on post Planck forefront issues (education)
 - Polarized foreground and related component separation
 - B mode de-lensing

Conclusions

- Science can be exploited provided one is able to analyze the data. Size and accuracy requirements for CMB targets make this challenging
- We need to exploit future HPC architectural developments to our needs. A national/shared infrastructure support is critical. NERSC/DOE may well not support us forever for free.
- Critical expertise has to be gathered through specific education of PhD students/young postdocs. This can realistically be gained only by working on future and ongoing experiments.

