Multi-frequency CMB data analysis: a Science Data Center point of view

Gianluca Polenta

ASI Science Data Center

on behalf of the Italian CMB community

Outline

- CMB and multi-frequency data analysis
 - a few science cases
- Science Ground Segment and Science Data Centers
 - International context
 - SGS Activities in Italy
 - The ASI Science Data Center
- Challenges and opportunities
- Conclusions

CMB and multi-frequency data

- 1. Scientific exploitation of CMB observations and the analysis of multifrequency maps has been already discussed:
 - a. Excellent foreground cleaning is mandatory to extract primordial CMB polarisation B-modes
 - b. Analysis of foregrounds is of scientific interest per sé
- 2. Here we move a step forward from multi-frequency to multi-mission analysis throughout the entire EM spectrum
- 3. A few science topics will be presented, but much more can be thought

CMB and multi-frequency data: Blazars

Class of AGN where the jet points very close to the line of sight Dominant extragalactic sources in the radio, microwave, γ -ray and TeV bands

Broad-band SED with two bumps:

- 1. Synchrotron peak at $\sim 10^{13}$ Hz
- 2. Inverse Compton peak at $\sim 10^{22}$ Hz

MF studies are essential to constraint physical models for blazar emission

Cutini et al, 2012, MNRAS, 445:4316

CMB and multi-frequency data: Blazars

Significant contamination in CMB maps:

- 1. Bright sources are detected and masked out
- 2. Faint sources are accounted for in a statistical way

Exploiting MF/MM source catalogues to extrapolate flux density of faint blazars at CMB frequencies could potentially improve CMB map cleaning

PCCS2, Planck Collaboration XXVI, 2015

CMB and multi-frequency data: y-ray emission

Fermi bubbles and microwave haze

- Microwave Galactic haze observed on Planck LFI maps, improving early evidences from WMAP
- Spatial correlation between Planck haze and Fermi γ-ray bubbles
- Microwave spectral index of the haze significantly harder than Galactic synchrotron emission
- 4. No consensus on its origin

CMB-γ correlation of diffuse emission could be of potential interest for dark matter studies

Planck Collaboration, PIP IX, 2013

SGS is a key part of a mission:

- 1. Ensuring data processing and archiving to reach the scientific objectives of the mission
- 2. SGS lifetime related to the mission
- 3. SGS has to be considered as an instrument, for both needs and cost

SDC has a different/complementary role:

- 1. Enlarge scientific return and benefit outside the mission team to the entire scientific community and to the general public
- 2. Long term data preservation: legacy extends well beyond mission lifetime
- 3. Developing tools to access and analyse data
 - a. A deep knowledge of mission data is needed, hence direct participation to the missions is essential
- 4. Supporting scientists in using mission data
 - a. Be part of the scientific community to be trusted by scientists

International context

- 1. European Space & Astronomy Center ESAC, ESA
 - a. Planck Legacy Archive
 - b. Visualisation tool, no quantitative analysis
- 2. Legacy Archive for Microwave Background Data Analysis LAMBDA
 - a. NASA archive, ground-based data are hosted as well
 - b. No tools for online analysis
- 3. NASA/IPAC Infrared Science Archive IRSA
 - a. Online visualisation of multi-frequency catalogue data
- 4. Data format differs from one experiment to another
- 5. Virtual Observatory has the potential to help, but no great success so far
- 6. Very large data volumes, hence SDCs are usually complemented by High Performance Computing centers

SGS activities in Italy

Italy has leading roles on SGS for ESA cosmology missions:

- Planck LFI Data Processing Center based at INAF-OATS
 - a. DPC manager, IOT responsibility, hardware
 - b. Distributed approach for the pipeline
 - Gathering contributions from the scientific team (including DPC itself) and integrating them into the official pipeline
 - Optimal trade off between high-quality pipeline and DPC responsibility for validation and delivery of data products
- Euclid SGS
 - a. SGS manager, Project Office and SDC-IT at INAF-OATS
 - b. 3/10 Organisation Units are led by Italy: ASDC, INAF-IASFMI, and INAF-OAR (plus deputy role for another OU, Uniroma3)
 - c. Lead of Galaxy Clustering and CMBxC Science WGs (INAF-OAB and SISSA), and lead of Survey WG (INAF-OAR)

Italy has also full responsibility of OLIMPO and LSPE DA pipeline

The ASI Science Data Center

Multi-frequency/multi-mission SDC

- Supporting ASI funded missions from radio to TeV, including Solar System Exploration, particle astrophysics, and even atmospheric physics (TGFs)
- Science-ready online tools: MMIA for space science, SED Builder, MATISSE, cosmic rays database

Cosmology missions:

- 1. Planck:
 - a. Contributions to the DA pipeline
 - Ingestion of Planck catalogues into ASDC online science tools
- 2. Euclid: OU-NIR lead, responsible for the near-IR photometer pipeline

The ASI Science Data Center

Multi-frequency/multi-mission science:

Simultaneous observation of blazars with Planck, Swift and Fermi satellites plus several ^{J. González-Nuevo⁴³, J. León-Tavares¹, M. López-Caniego³², M. N. Mazziotta³³, C. Monte^{14,33}, M. Perri², S. Rainò^{14,33}, G. Tosti^{35,15}, A. Tramacere²⁸, F. Verrecchia², H. D. Aller⁴, M. F. Aller⁴, E. Angelakis⁴¹, D. Bastieri^{13,34}} ground-based observatories

Large coordination effort:

- MoU between three mission teams (ESA and NASA)
- Swift observation plan
- Data analysis harmonization

Planck early results XV, 2011, A&A, 536, A15 Giommi, Polenta, et al, 2012, A&A 541, A160 Léon-Tavares et al, 2012, ApJ 754, 23 Cutini et al, 2012, MNRAS 445, 4316

A&A 541 A160 (2012) DOI: 10.1051/0004-6361/201117825 © ESO 2012

Astronomy Astrophysics

Simultaneous Planck, Swift, and Fermi observations of X-ray and γ -ray selected blazars

P. Giommi^{2,3}, G. Polenta^{2,23}, A. Lähteenmäki^{1,19}, D. J. Thompson⁵, M. Capalbi², S. Cutini², D. Gasparrini², S. Kaino T. O. Usul T. A. Hainacete, r. Velrechia, h. D. Anter, M. F. Alet, J. M. Bragetaks, J. D. Substrat
A. Berdyugin⁴ S. A. Bonaldi³, L. Gonavera^{43,7}, C. Burigana⁵ D. N. Burrow¹⁰, S. Buson⁴ E. Cavazzul²,
G. Chincarini⁴⁶, S. Colafrancesco²³, L. Costamante⁴⁷, F. Cuttaja²⁶, F. D'Ammando²⁷, G. de Zotti^{22,43} M. Frailis²⁴,
L. Fuhrmand⁴¹, S. Galeotta²⁴, F. Gargano³ N. Gehrels⁵, N. Giglietto^{14,33}, F. Giordano¹⁴, M. Giroletti²⁷,
E. Keihänen¹², O. King⁴², T. P. Krichbaum⁴¹, A. Lasenby^{6,38}, N. Lavonen¹, C. R. Lawrence³⁶, C. Leto², E. Lindfors⁴⁵ N. Mandolesi²⁶, M. Massardi²², W. Max-Moerbeck⁴², P. F. Michelson⁴⁷, M. Mingaliev⁴⁴, P. Natoli^{16,2,26}, I. Nestoras⁴¹, E. Nieppola^{1,17}, K. Nilsson¹⁷, B. Partridge¹⁸, V. Pavlidou⁴², T. J. Pearson^{8,29}, P. Procopio²⁶, J. P. Rachen⁴⁰, A. Readhead⁴², R. Reeves⁴², A. Reimer^{31,47}, R. Reinthal⁴⁵, S. Ricciardi²⁶, J. Richards⁴², D. Riquelme³⁰, J. Saarinen⁴⁴ A. Sajina¹¹, M. Sandri²⁶, P. Savolainen¹, A. Sievers³⁰, A. Sillanpää⁴⁵, Y. Sotnikova⁴⁴, M. Stevenson⁴², G. Tagliaferri²¹, L. Takalo⁴⁵, J. Tammi¹, D. Tavagnacco²⁴, L. Terenzi²⁶, L. Toffolatti⁹, M. Tornikoski¹, C. Trigilio²⁰, M. Turunen¹, G. Umana²⁰, H. Ungerechts³⁰, F. Villa²⁶, J. Wu³⁹, A. Zacchei²⁴, J. A. Zensus⁴¹, and X. Zhou³⁵

Giommi, Polenta, et al, 2012, A&A, 541, A160

- 1. Short term
 - a. Planck data yet to be fully exploited
 - Data distribution, i.e. maps
 - Multi-frequency/Multi-mission analysis
 - b. OLIMPO and LSPE are scheduled to come soon
 - No consolidated plan yet for archiving and distribution
- 2. Mid term
 - a. Multi-mission science with LSS data
 - Several mm-wave experiments already planned in Europe and US are expected to produce data in a few years
- 3. Long term
 - a. capitalize on a possible ESA M5 CMB mission

CMB Italian community has a consolidated SGS expertise:

- a. Leading roles in ESA cosmology missions
- b. Entire pipeline for Italian sub-orbital experiments

Italy has a SDC world-class facility at the ASDC

Multi-mission data analysis has the potential for:

- a. Improving CMB and cosmology results
- b. Addressing interesting scientific topics that cannot be studied with single mission data

This is where the ASDC can make the difference

