The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

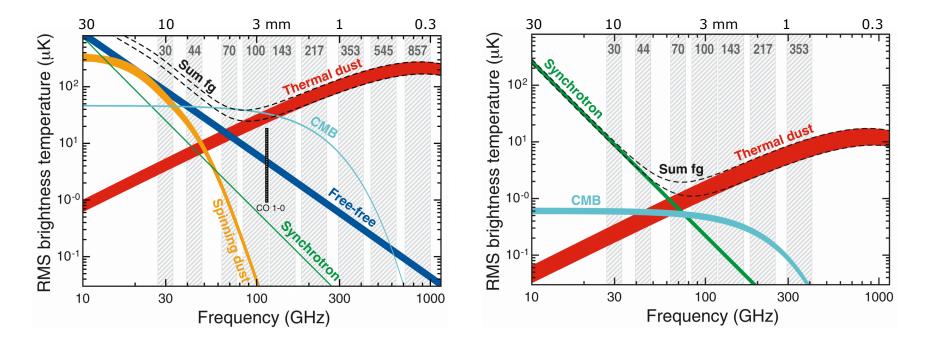
Francesco Piacentini

Sapienza Università di Roma, Dipartimento di Fisica

on behalf of the Italian CMB community

- International scenario for instruments devoted to measurement of Temperature Anisotropy and Polarization of the Cosmic Microwave Background radiation
- Spectral bands
- Angular resolution
- Targets and Sensitivity
- Instruments

Ground Balloon Space

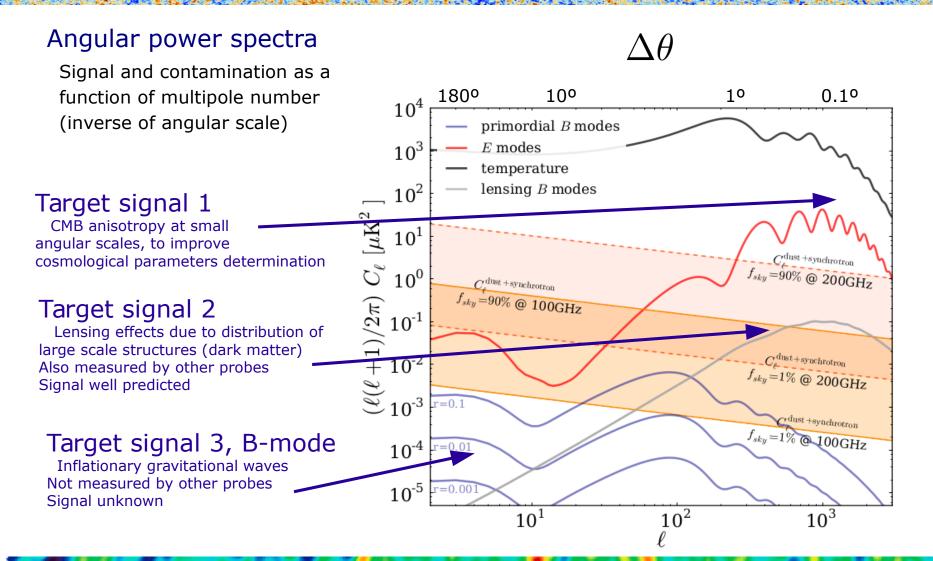

DIPARTIMENTO DI FISI

Spectral frequencies of interest

Diffuse emission in the microwave band:

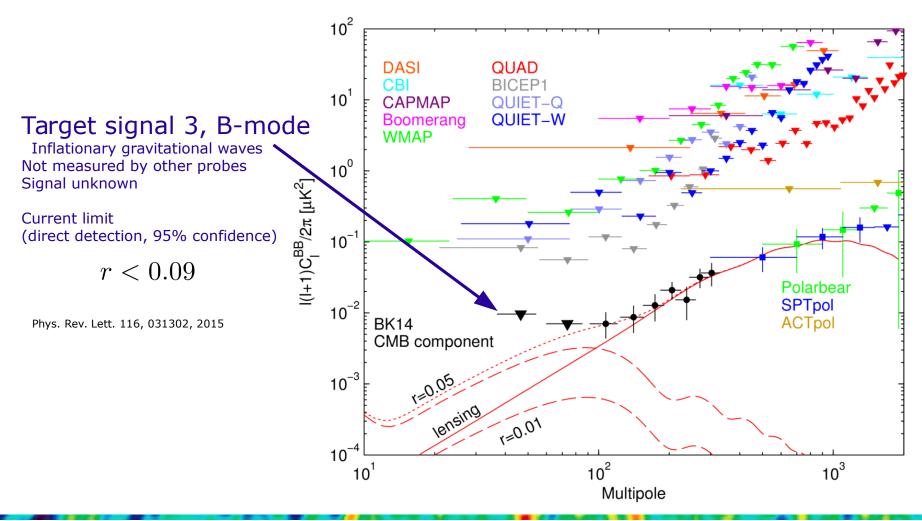
Temperature (best 81-93% of sky)

Polarization (best 73-93% of sky)

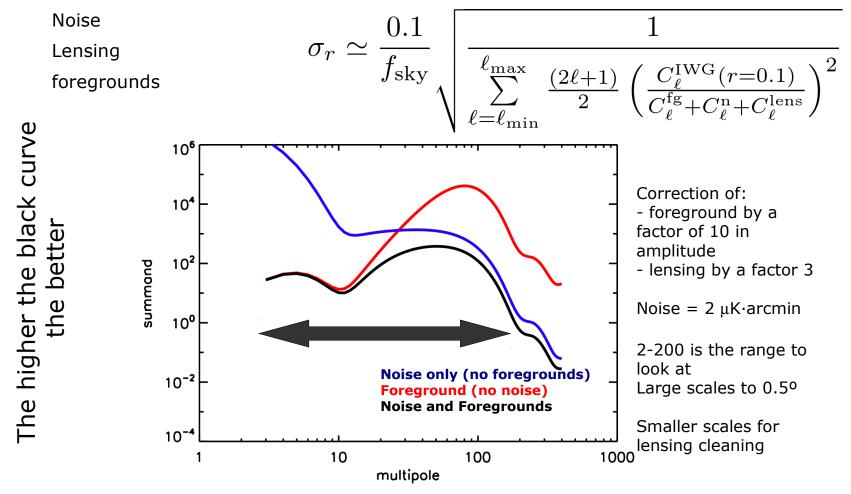

(Planck observation bands in shadow)

DIPARTIMENTO DI FIS

Angular scales of interest



Inflationary Gravitational Waves – current data



SAPIENZA UNIVERSITÀ DI ROMA

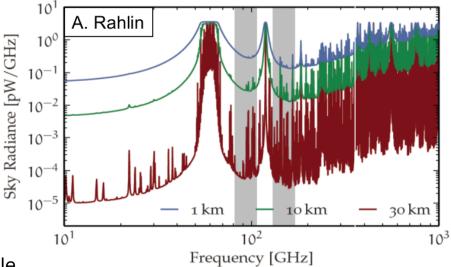
Sensitivity to Inflationary Gravitational Waves

Following Kamionkowski & Kovetz, ARAA 2016, the **error** on the tensor to scalar ratio, in presence of noise and foreground can be approximated as a combination of:

DIPARTIMENTO DI FIS

1) Ground

- Mid-Large telescopes (up to 10 meters)
- Atmosphere limits instruments to low spectral frequencies (up to 150 GHz)
- Long integration time (years), low noise
- Requires "extreme" locations, dry and high:
 - Antarctica, Atacama, ...


2) Balloon

- Smaller telescope (up to ~2m)
- Can go to higher frequencies
- Short integration time (2 weeks)
- High risk

3) Satellite

- Can go to higher frequencies
- Long integration time (years)
- Small telescope (up to ~2m), or deployable

ogenzia spaziale italiana

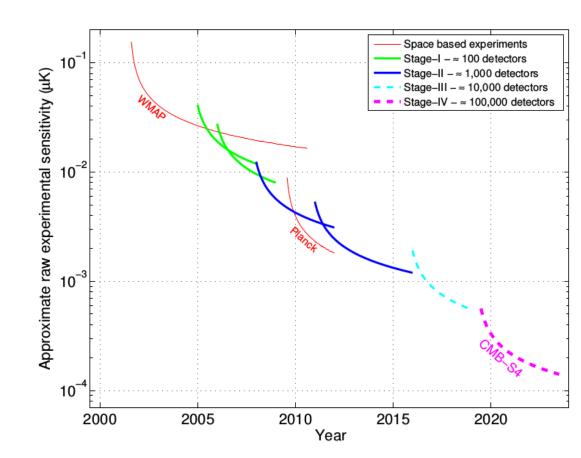
Ground based experiments – Europe

			М	FI		TGI	FGI
	Nominal frequency [GHz]	11	13	17	19	30	40
• QUIJOTE	Bandwidth [GHz]	2	2	2	2	10	12
	Number of horns	2	2	2	2	31	31
 Active in Tenerife 	Channels per horn		4	4	4	4	4
	Beam FWHM ($^{\circ}$)	0.92	0.92	0.60	0.60	0.37	0.28
 0.5 – 1^o resolution 	$T_{\rm sys}$ [K]	25	25	25	25	35	45
	NEP $[\mu K \ s^{1/2}]$	559	559	559	559	44	52
 Polarization sensitive: galaxy + deep survey 	Sensitivity [Jy $s^{1/2}$]	0.61	0.85	0.62	0.77	0.06	0.07

• **QUBIC** bolometric interferometer: in preparation (see presentation by S. Masi)

	Wavelength [mm]	2.0	1.2	1.2(Q,U)
NIKA 2	Frequency [GHz]	150	260	260
Active in IDAM Cranada	FWHM [arcsec]	18.5	11.0	11.0
 Active in IRAM Granada 	Number of detectors	1000	2x2000	
 High resolution 	FOV diameter [arcmin]	6.5	6.5	6.5
 Galaxy clusters 	NEFD [mJy/beam·s ^{1/2}] 90% of the FOV	10	15	30
	Point Source Sensitivity 1 sigma one hour in the FOV [mJy]	0.18	0.26	0.53
	Extended Source 1 sigma one hour in the FOV [MJy/sr per /beam]	0.042	0.180	0.350
	Compton SZ y sensitivity 1 sigma one hour in the FOV per beam	40x10 ⁻⁶		
	Mapping speed [arcmin ² /mJy ² /hour]	1100	480	120

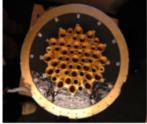
Main limit is the atmosphere. It precludes frequency above 150 GHz, and control of dust contamination



DIPARTIMENTO DI FISI

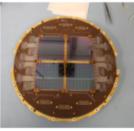
Ground based experiments – US

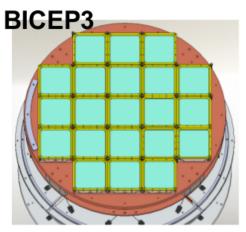
- The most massive efforts are the US Stage 3 and Stage 4 programs
 - Target
 - σ(r) < 0.001
 - Increase detector number
 - Up to 500'000 TES detectors
 - 40 240 GHz
 - Target noise 1 μ K·arcmin
 - Increase detection sites
 - Antarctica
 - Atacama
 - Up to 50 % of the sky
 - Increase integration time
 - Next 10 years at least



DIPARTIMENTO DI FISI

UNIVERSITÀ DI ROM


Ground based experiments - US - BICEP3



100 detectors 100 - 150 GHz

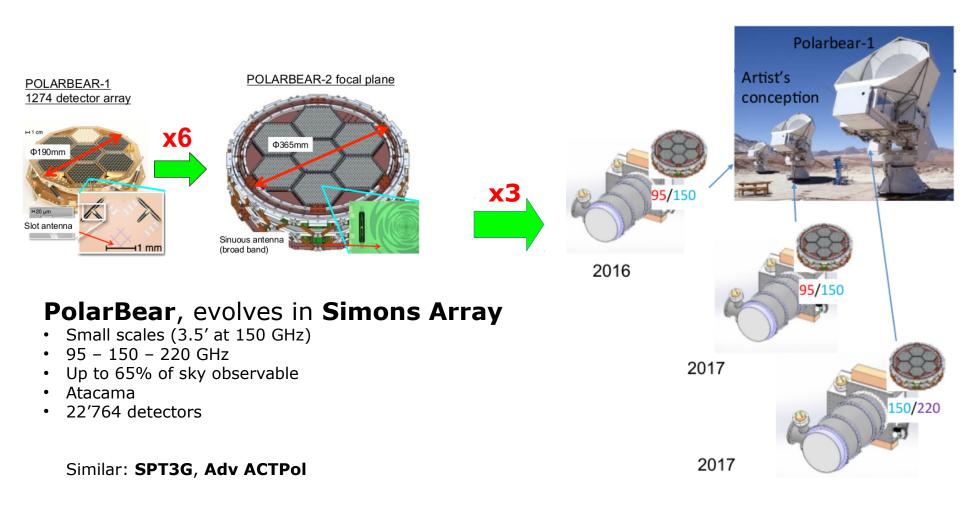
BICEP2

500 detectors 150 GHz

2560 detectors 95 GHz

BICEP

Keck Array


Target:

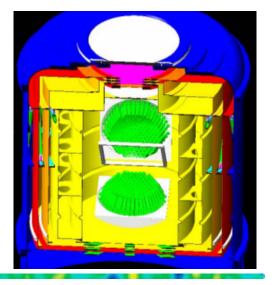
- Inflationary Gravitational Waves (B-mode)
- Large scales (~1° resolution)
- 90-150 GHz
- Similar: CLASS, ABS

Ground based experiments – US – PolarBear/SA

SAPIENZA Università di Roma

Balloon experiments (Italy)

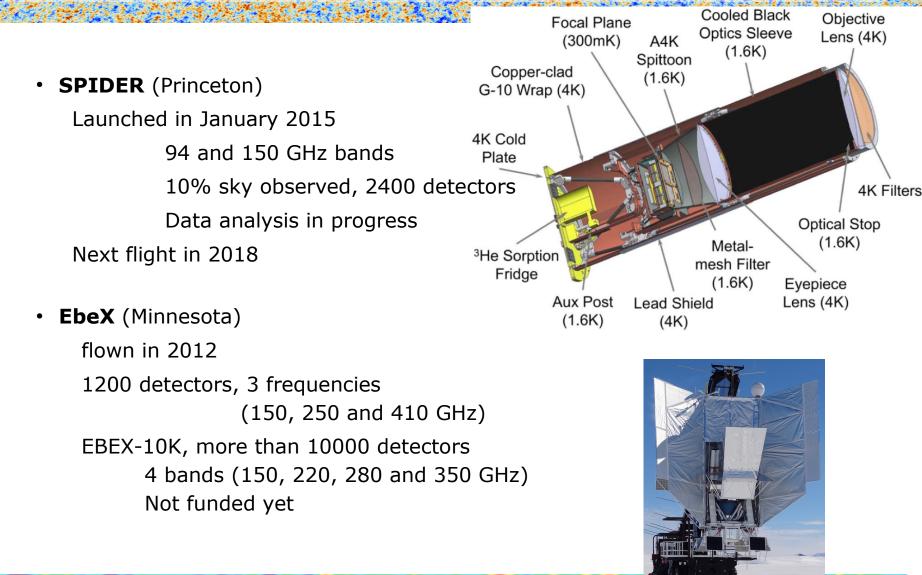
Italy (see Silvia Masi presentation)


OLIMPO

- No polarization
- Ready to go
- 140 210 345 480 GHz, with spectroscopic capability
- SZ effect
- high angular resolution

LSPE

- Targeted to large scale of CMB polarization
- 40 220 240 GHz
- In preparation: launch planned for December 2017

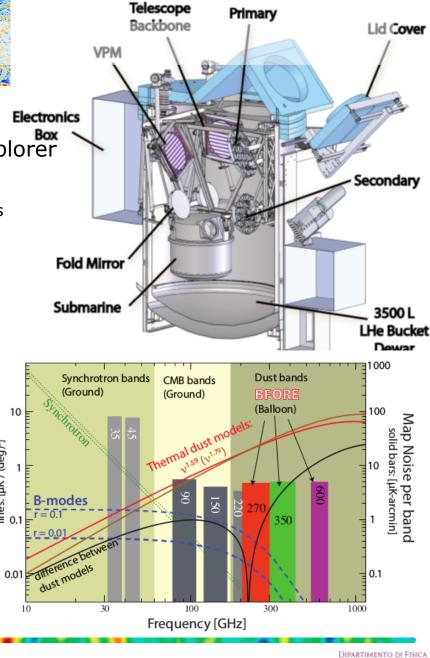


Balloon experiments (US)

DIPARTIMENTO DI FISIR

Balloon experiments (US)

Box **PIPER** Primordial Inflation Polarization Explorer (Goddard)

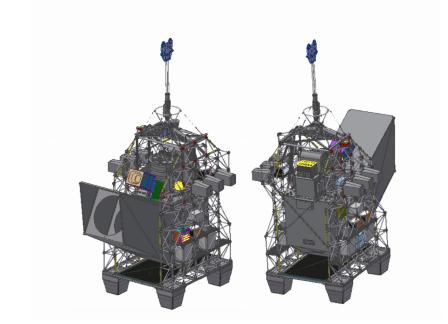

> 5120 TES bolometers in four 32 x 40 arrays 1.5 K Optics with no warm window variable-delay polarization modulator Twin cryogenic telescopes 200, 275, 350, and 600 GHz (Single frequency band per flight) 8 flights, North and South hemisphere Funded 3MS polarization of different sources

B-FORE (Arizona, U-Penn)

Measure of interstellar dust polarization 270, 350, and 600 GHz 10000 superconducting detectors Based on the consolidated BLAST platform Planned for Ultra-Long-Duration-Balloon Not funded yet

lines: [µK / (deg)²] 1. 1

10



Balloon experiments (France)

• Plan-B (Grenoble, Toulouse, Paris)

Measure of interstellar dust polarization Based on NIKA detectors (KIDs) Based on CNES PILOT gondola and primary mirror

Optics	
Primary mirror	M1 from PILOT $(0.8m)$
Instantaneous FoV (diameter)	3°(spec)
Polarization split	45° polariser at coldest temperature
Half-wave plate	4.2 K on magnetic bearing
Total transmission	40% (goal) & $20%$ (spec)
Angular resolution	5'(goal) & 7'(spec)
Detectors	
Total number of pixels	1900 (goal) & 980 (spec)
Fraction of good pixels	> 90%(goal) $> 70%$ (spec)
Pixels size	From $2.3x2.3$ to $3.2x3.2$ mm
Frequency	One spectral band 450-700 GHz (baseline)
	Two bands $350-550 \& 450-700 \text{GHz}$ (option)
NEP	Background NEP (goal); $\times 2.5$ (spec)
Multiplexing ratio	250
KID frequencies	200-800MHz (depending on pixels size)
Cryogenics	
Base Temperature	120mK (goal) & 180mK (spec)
Power dissipated at 4K (amplifiers)	$40 \mathrm{mW}$
Power dissipated at base temperature	$< 1 \mu W$
Half-wave plate rotation	10 Hz (goal) & 2.5 Hz (spec)
Polarization modulation	40 Hz (goal) & 10 Hz (spec)
Number of in/out RF lines	Between 4 and 8
Power readout electronics	160 W
Power cryostat (24h operation)	20 W

Sub orbital summary

Project	Location	Status	Frequencies	Detectors Ang.Res. Unicity		Science goals		
ACT-pol/AdV-ACT	Atacama	Running	30, 40, 90, 150, 230	TES-TDM	high	Wide/deep/multifreq	r<0.01 + lensing	
ABS	Atacama	Running	150	TES-TDM	low	HWP rotation test	TES+HWP tests	
CLASS	Atacama	>2015	40, 90, 150, 220	TES-TDM	low	Very wide	r<0.02	
POLARBEAR/SA	Atacama	Running	90, 150, 220	TES-FDM	high	First lensing	lensing	
SPT-pol/SPT-3G	South Pole	Running	95, 150, 220	TES-FDM	high	Highest resolution	r<0.01 + lensing	
BICEP3/Keck Array	South Pole	Running	95, 150, 220	TES-TDM	med	Very deep	r<0.01	
QUBIC	Dome C	>2016	90, 150, 220	TES-TDM	med	Bol. interferometry	r<0.01	
B-machine	White Mountain	Running	40→3-15	LNA	med	Low freq. monitor	low freq	
GLP	Greenland	?	150, 210, 267	KIDs	med	KIDs	reion. peak	
Ground-Bird	?	>2016	145,220	KIDs	low	Technology for LB	reion. peak	
MuSE	?	?	44, 95, 145, 225, 275	NTD-MM	low	Multimoded	reion. peak	
QUIJOTE	Tenerife	Running	10, 20, 30, 40	LNA	low	Wide and multi-freq	r<0.05 + low freq	
EBEX	LDB-Antarctica	2012→?	150, 250, 410	TES-FDM	med	First Baloon for TES	r<0.01	
SPIDER	LDB-Antarctica	2014→2017	95, 150→+220	TES-TDM	med	Super sensitive	r<0.02	
LSPE	LDB-Svalbard	>2016	43, 95, 150, 220, 250	TES-FDM-MM	low	Polar night flight	r<0.03 + reion. peak	
Piper	Multple 1-day flights	>2015	200, 270, 350, 600	TES-TDM	med	Multi flight	r<0.01 + reion. peak	
BFORE	LDB-Antarctica	>2018	270, 350, 600	TES+KIDs	high	Foreground machine	Foreground	

Courtesy E. Battistelli

DIPARTIMENTO DI FISICA

Only space can provide at the same time:

- Full Sky
- Wide Frequency range
- Stability
- Long integration time

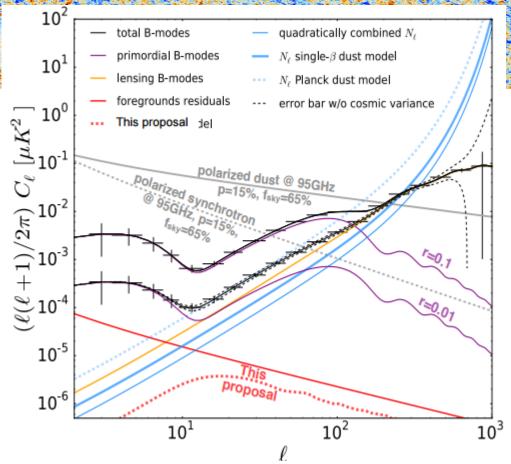
JAXA – LiteBIRD

Lite (light) satellite for the studies of **B**-mode polarization and **I**nflation from cosmic background **R**adiation **D**etection

JAXA mission to search for (and characterize) primordial gravitational waves Method: Full-sky CMB polarization survey at degree angular scales Full success: σ(r) < 0.001 (total uncertainty on tensor-to-scalar ratio) Statistical + Systematic + Foreground + Lensing + Observer bias

Status:

Currently in Phase A Target launch 2020 Observing time 3 years Multipole 2 – 200 (1º resolution) Relies on ground measurements for full small scales



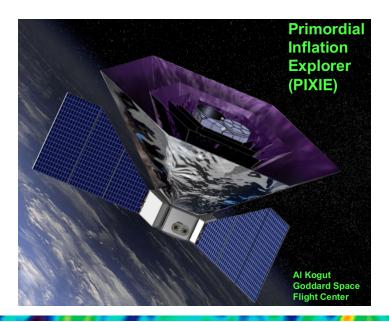
DIPARTIMENTO DI FIS

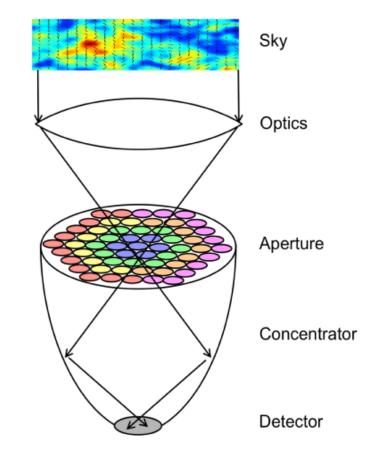
JAXA – LiteBIRD

- σ(r) = 0.45·10⁻³
 for r = 0.01, including
 foreground removal*, cosmic
 variance and delensing**
- r < 0.4 x 10⁻³ (95% C.L.) for undetectably small r

* Errard et al. 2011, Phys. Rev. D 84, 063005** Sherwin & Schmittfull arXiv:1502.05356

Band	Beam	NET	Pixels	$N_{\rm wf}$	$N_{\rm bolo}$	NETarr	Sens.	Sens. v	with	Band
(GHz)	(ar-	$(\mu K\sqrt{s})$	\mathbf{per}			$(\mu K\sqrt{s})$	$(\mu K \cdot \operatorname{arcmin})$	margin		
	cmin)		wafer					$(\mu K \cdot arcm)$	in)	
60	54.1	94	19	8	304	5.4	9.6	15.7		Х
78	55.5	59	19	8	304	3.4	6.0	9.9		х
100	56.8	42	19	8	304	2.4	4.3	7.1		Y
140	40.5	37	37	5	370	1.9	3.4	5.6		Y
195	38.4	31	37	5	370	1.6	2.9	4.7		\mathbf{Z}
280	37.7	38	37	5	370	2.0	3.5	5.7		Z
total					2022		1.6	2.6		

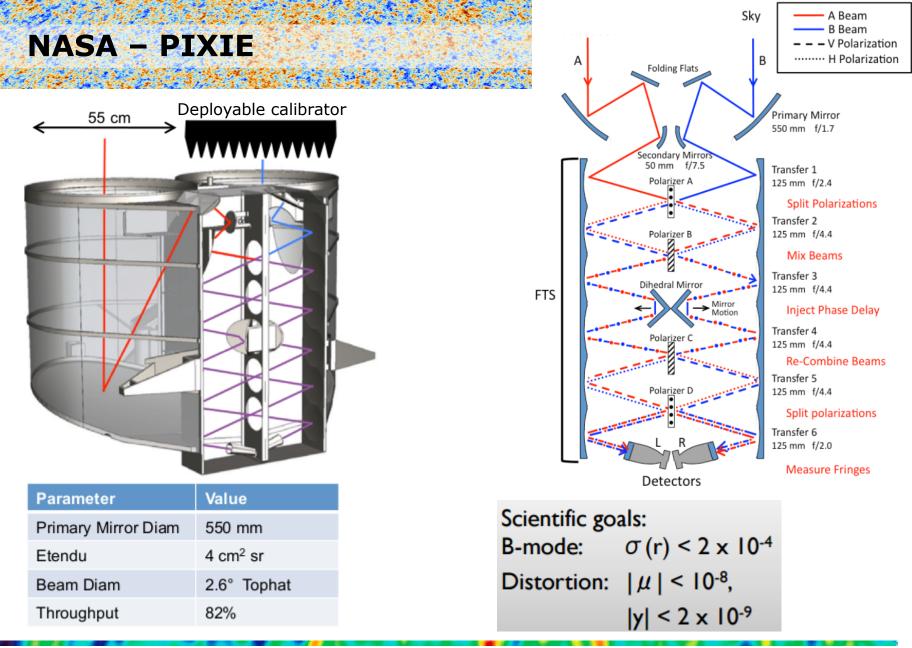




DIPARTIMENTO DI FISIO

NASA - PIXIE

Replace many detectors with 4 multimoded detectors Entire instrument at 2.725 K Replaces filters with Fourier Transform Spectrometer 400 channels 30-6000GHz Spins at 4 RPM to sample Stokes Q/U Not selected in 2011 (re-proposed in 2017)



DIPARTIMENTO DI FISIC

DIPARTIMENTO DI FISIC/

ROSCOSMOS – MILLIMETRON - "Spectr-M" project

TABLE 1 MILLIMETRON MISSION REQUIREMENTS

- Cooled 10 meters telescope
- No polarization
- Includes a spectrometer developed in Sapienza
- Inherits the experience of Radioastron
- Detailed science case in
 - http://arxiv.org/abs/1502.06071:
 - a. Physics near the galactic center black hole
 - b. Formation of stars and planets
 - c. Galaxy evolution and cosmology
 - d. Investigation of dark energy
 - e. Sunyaev-Zeldovich effect on clusters of galaxies up to highest possible distances
 - f. Distortions in the CMB absolute spectrum (2.726 Kelvin Black Body)

Aperture of the telescope	10m
Aperture ratio	f/7
The telescope wavefront error (RMS)	$\leq 10 \mu m \text{ (goal } \leq 5 \mu m\text{)}$
Telescope temperature	< 10K
Covering wavelength range	20µm ÷ 20mm
Modes of observation	single-dish or element
	SVLBI system
Total mass	≤ 6600 kg
Orbit	L2
Life time	10 years (3-5 years cold
	phase)
Launch vehicle	Proton

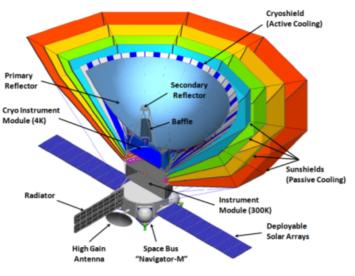
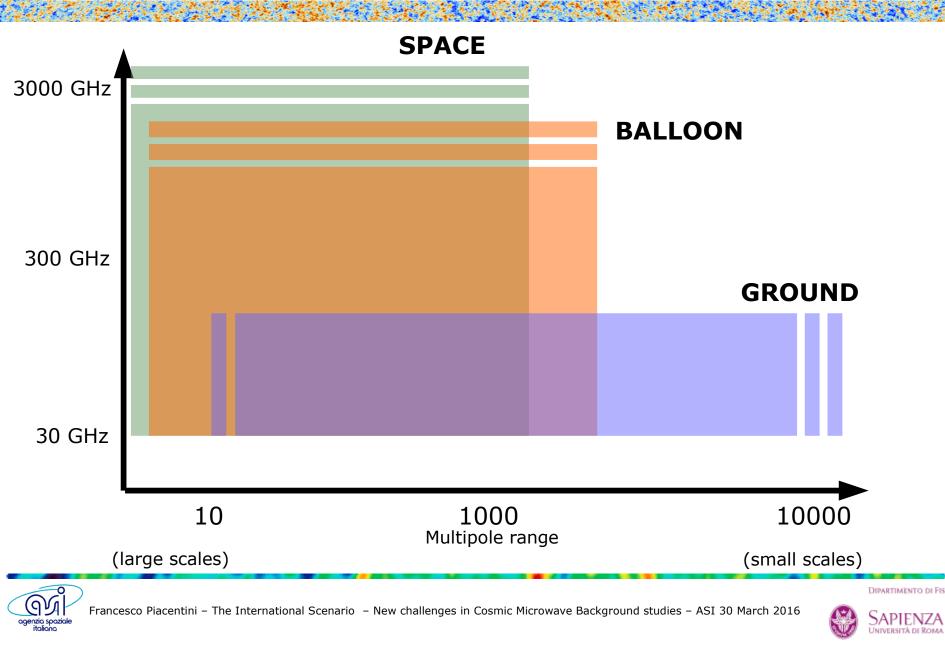


Fig. 1 The conceptual design of the Millimetron

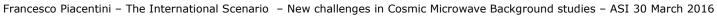
ROSCOSMOS – MILLIMETRON - "Spectr-M" project

DIPARTIMENTO DI FISICA

European proposals to ESA


See next presentation by P. de Bernardis

DIPARTIMENTO DI FISICA


The international community effort

Ground based, balloon and space are all important for CMB studies

DIPARTIMENTO DI FISICA

- Ground based, balloon and space are all important for CMB studies
- Balloon and Space are mandatory for control of dust contamination
- Space is mandatory for full sky and stability

- Ground based, balloon and space are all important for CMB studies
- Balloon and Space are mandatory for control of dust contamination
- Space is mandatory for full sky and stability
- Italy has a deep experience in Space and Balloon experiments

- Ground based, balloon and space are all important for CMB studies
- Balloon and Space are mandatory for control of dust contamination
- Space is mandatory for full sky and stability
- Italy has a deep experience in Space and Balloon experiments
- Several different groups are tackling the same scientific target form different prospectives
- The result will be achieved from a community effort

DIPARTIMENTO DI F