A proposal to ESA-M5 for a CMB polarization mission (COrE++)

Paolo de Bernardis

Sapienza University of Rome

on behalf of the Italian CMB community

Overview

- 1. Scientific goals of the ESA-M5 CMB polarization mission
- 2. Why in space
- 3. Fundamental limits and mission/instrument design
- 4. Mission implementation
- 5. Conclusions

COrE++ science

- Final measurement of B-mode polarization, able to extract the cosmological signal from overwhelming polarized foregrounds.
- Starobinsky model, R^2 (Higgs) inflation have a tensor to scalar ratio $r > 2x10^{-3}$.
- The mission should target at $\sigma_r < 4x10^{-4}$.
- Such a sensitivity tests Planck-scale physics of the field values in the large-field inflation models:
 - o Lyth bound: $r \le 2.2 \times 10^{-3} \left(\frac{\Delta N_{slow}}{60} \right)^{-2} \left(\frac{\Delta \phi_{slow}}{M_P} \right)^2$ (Boubeker and Lyth 2005)
 - A null-result would disfavor the entire class of largefield ($\Delta \phi > M_p$) models, and very few would survive.
- $\sigma_r < 4x10^{-4}$ should be possibly established without $\ell < 10$.

Goals of the CMB polarization mission for M5

 n_s would also be measured much better, so that T_{reh} can be estimated.

Grey: WMAP Blue: Planck Orange: COrE+

Goals of the CMB polarization mission for M5

Gravitational lensing from dark matter structures

Gravitational lensing from dark matter structures.

Gravitational lensing from dark matter structures

With the same angular resolution and sensitivity required for the inflationary Bmodes, COrE+ produces a high fidelity map of the gravitational potential integral, due to dark matter structures from here to recombination: **Direct detection** of dark matter structures.

Gravitational lensing from dark matter structures

Goals of the CMB polarization mission for M5

Extract and catalogue 100000 SZ clusters !

1013

0.C

0.5

£.0

Redshift z

2.0

2.5

3.0

0

Constraining the neutrino sector

Why in space: 1) background fluctuations

Why in space: 2) atmospheric instability

A spaziale zha

Why in space: 3) systematic effects

- Atmospheric fluctuations larger at large scales, where the inflation signal is.
- The effects of ground pickup (from the sidelobes) are larger at large scales.
- The environment temperature is not stable at long timescales
- Duty cycle of ground-based measurements << 100%
- All these effects can be vastly reduced with a space mission in L2 (as WMAP, Planck).
- In L2, the solid angle occupied by the Earth is reduced by a factor 10000.
- Looking at anti-solar directions, the Earth, the Moon and the Sun are very far from the boresight, so that pickup is minimized.
- As long as the solar elongation is kept constant, the environment is extremely stable, and so is the instrument performance.
- The effect of cosmic rays is heavier in space than on the ground, and must be properly mitigated with special detector design, and monitored in the data analysis.

Instrument/mission design driven by fundamental limitations

- Current precision (Planck) $\sigma_r \sim 0.05$; our goal $\sigma_r \sim 0.0004$
- Fundamental limitations to Accuracy:
 - Overwhelming B-mode signals are produced:
 - Along the path of CMB photons, by gravitational lensing (to be monitored with high angular resolution)
 - In our Galaxy, by polarized foregrounds (to be monitored with many bands and wide frequency coverage)
 - In the instrument, if not properly designed (minimize polarizing components in the optical path, use proper optical design)
- Fundamental limitations to Sensitivity:
 - Photon noise: the CMB and the emission of the instrument are fluctuating according to photon statistics.
 - Mitigation: work in a stable, low-background environment, for a long time (cold telescope, in space, with active coolers) with many detectors (kilopixel arrays)

Frequency coverage to monitor foregrounds

Frequency coverage to monitor foregrounds

- Results from WMAP show that at low frequency the polarized synchrotron background is strong and has spectral index fluctuations.
- Preliminary results from Planck-HFI show that polarized dust emission must be monitored with great spectral and spatial accuracy to avoid biases in r, even at l=100 (fluctuations of the spectral index).
- Monitoring polarized dust at 340 GHz and extrapolating at 140 GHz to remove it (as in BicepKeckPlanck) is only a first approximation, and is not enough for our goal accuracy. Same for monitoring synchrotron at 30 GHz.
- The final mission must have excellent sensitivity and accuracy in a wide interval of frequencies above 200 GHz (which cannot be monitored from the ground) to extrapolate reliably the polarized emission from interstellar dust at 90-140 GHz.

Multipoles coverage to monitor lensing B-modes

Required sensitivity and resolution

- The survey sensitivity (μK arcmin) depends on total integration time, number of detectors, noise of the detectors.
- Limit on *r* : depends on survey sensitivity, multipoles coverage, *and* lensing confusion (below 4.5µK arcmin the survey becomes lensing-limited).
- De-lensing efficiency depends on the angular resolution of the telescope :

- Requirements: ~ 2 μ K arcmin *and* ~ 6' resolution in the CMB channels
- High resolution implies additional science results (SZ, neutrino masses etc.)

Beam ellipticity

• The ellipticity of the beam converts unpolarized CMB anisotropy into spurious polarization. The effect at large scales is mitigated for small beams:

• For small apertures, a Half-Wave Plate is a must (e.g. LITEBIRD, D = 40 cm)

Additional considerations

- We want to detect CMB polarization with more than one channel (preferably 3 channels for cross-spectra, jackknives, comparisons), with enough sensitivity in each CMB channel individually. Long integration time and excellent stability needed.
- We will observe small signals embedded in many polarized local foregrounds and instrumental effects.
 - Need to increase the number of spectral channels above the number of components parameters
 - Need to increase the angular resolution to mask polarized compact sources (radio & IR)
- Very large scales will be hard to measure, since foregrounds increase at large scales. But detection of both the reionization and recombination bumps will be convincing.
- Systematic effects at very low level must be forecasted and monitored.

Systematics: focal plane rotation

Systematics: pointing errors

Mission/instrument implementation

Given all this, we need to implement an imaging polarimeter:

- With a cold (< 60K) telescope
- Aperture > **1.2m** (4.8'FWHM@220GHz)
- Covering a wide frequency range: 60 to 600 GHz
- With a large number of single-mode photon-noise-limited detectors optimally distributed among different frequencies, but with several hundred detectors in the CMB bands (90-140-220 GHz). If wide band (Δλ/λ ~ 0.5), a total of 2000 detectors will be needed for a survey sensitivity of 2 µK arcmin.
- The sky survey will be long (**3yrs**) and thermal stability is a must (detectors: continuous dilution cooler at **100 mK**, no ADR; telescope: **passive cooling**)
- The satellite should operate in **L2** (as WMAP and Planck) with a **sky scan** strategy covering a large sky fraction in a short time (days) and observing the same sky pixel with very different orientations of the polarimeter.
- A rotating HWP should be avoided, to reduce complexity and cost, if at all possible.

Mission/instrument implementation

Performance / requirement	Solution
Resolve the CMB ≈ 4'-6' resolution or better	1.2 to 1.5m telescope or better ≈ 6-7' at 135 GHz; ≈ 4-5' at 200 GHz
Signal dominated data (S/N >2-3 for B_{lens}) $\sigma_p = 1.5-2.5 \ \mu K.arcmin \ on \approx 100\% \ sky$	from ≈ <mark>2500</mark> to 5000 detectors at ≈ 100 mK
Exquisite control of systematic effets for polarisation measurements	L2 orbit; Polarisation modulation by HWP or scanning strategy
Exquisite control/separation of polarised (and intensity) foregrounds	15-20 frequency bands (or more) covering ≈ 60-600 GHz (or more)

Mission/instrument implementation: scan strategy

The telescope and the polarimeter must be heavily shielded from solar radiation, and solar illumination angle depends on scan strategy.

Mission/instrument implementation: scan strategy

- Spin (1 rpm) +
 Precession (0.25 rpd)
- Advantage: with β far from 90° every pixel is observed with a wide range of orientations of FOV the polarimeter: necessary condition for avoiding the HWP.
- For full sky coverage $\alpha + \beta > 90^{\circ}$.
- Baseline: $\alpha = \beta = 45^{\circ}$. cfr: Planck $\beta = 80^{\circ}$, $\alpha = 0^{\circ}$.
- To be optimized during phase-A.
- Feasible with large flywheels (5-6).

Mission/instrument implementation: shielding

The best way to cool the telescope and the instrument is to use passive cooling V-grooves. Wrt Planck (open V-grooves), β is smaller, and the solar illumination angle has a wider range, so V-grooves must have a «bucket» configuration:

- Aperture: 1.2 1.5 m
- Optimized for wide focal plane and polarization purity.
- Considered
 configurations:
 - Cross-Dragone
 - Open-Dragone
 - Gregorian
- The Gregorian configuration offers the best combination of used volume in the bucket, wide polarization-pure focal plane, and control of straylight.

- Aperture: 1.2 1.5 m
- Optimized for wide focal plane and polarization purity.
- Considered configurations:
 - Cross-Dragone
 - Open-Dragone
 - Gregorian
- The Gregorian configuration offers the best combination of used volume in the bucket, wide polarization-pure focal plane, and control of straylight.

The telescope fits in the V-grooves and the assembly fits in the fairing

Images from ESA CDF study: «CMB B-modes polarization mission». To be published (April 2016).

The bucket V-grooves radiatively cool the telescope assembly down to < 50K

Images from ESA CDF study: «CMB B-modes polarization mission». To be published (April 2016).

Two purposes for the HWP:

- Move the signal bandwidth above the 1/f noise knee of detectors
- 2. Modulate polarization so that beam ellipticity and other systematic are mitigated.

M4 approach: No HWP, no mechanisms, wider bandwidths and frequency coverage, no HWP-related systematic effects.

Solve 1. and 2. in the post-processing:

- 1. Can be solved with good detectors (1/f knee < 0.1Hz) and proper decorrelation/destriping.
- 2. Can be solved if the aperture of the telescope is large, i.e. the beams are much smaller than the large-scale where B-modes are to be detected.

- M4 proposal baseline: horns-coupled focal plane.
 - Main advantages: high TRL, consolidated technology; clean definition of bolometer FOV and edge-taper on reflectors; reduction of straylight; polarization clean
 - Main disadvantages: high cost, high mass@100mK
 - Recent developments (in Europe):
 - 3D-printed horns in plastic material, metal coated (for low freq. bands)
 - Planar lenses arrays (EAS-ITT study ITT AO/1-7393/12/NL/MH)
- Alternative: **Filled-array** focal plane.
 - Main advantages: Fabrication simplicity; reduced cost; low mass@100mK.
 - Main disadvantages: Nyquist sampling of Airy disk requires 4x sensors and lower detector NEP; requires cold stop in optical system and cold (< 1K) BB box surrounding the focal plane to reduce stray-light and loading.

channel	beam	$N_{\rm det}$	ΔT	ΔP	ΔI	$\Delta y \times 10^6$	PS flux (5σ)	
GHz	arcmin		$\mu K.$ arcmin	$\mu K.$ arcmin	kJy/sr.arcmin	$y_{\rm SZ}$.arcmin	mJy	
60	14	28	11.3	16	1.14	-2.3	6	
70	12	30	10.5	14.9	1.4	-2.2	6.3	
80	10.5	38	9.1	12.9	1.53	-2.0	6	
90	9.33	72	6.5	9.2	1.32	-1.5	4.6	
100	8.4	84	6.0	8.5	1.43	-1.5	4.5	
115	7.3	124	5.0	7.0	1.45	-1.3	4	
130	6.46	180	4.2	5.9	1.43	-1.3	3.5	CMB
145	5.79	264	3.6	5.0	1.37	-1.3	3	channels
160	5.25	254	3.8	5.4	1.6	-1.7	3.1	
175	4.8	290	3.8	5.3	1.69	-2.2	3.0	
195	4.31	346	3.8	5.3	1.79	-4.1	2.9	
220	3.82	200	5.8	8.1	2.78	-	4.0	
255	3.29	140	8.9	12.6	4.11	5.5	5.1	
295	2.85	60	19.4	27.4	7.84	5.7	8.4	
340	2.47	60	30.9	43.7	9.91	5.6	9.2	
390	2.15	60	55.0	77.8	12.63	7.0	10.2	
450	1.87	60	116.6	164.8	16.48	10.9	11.5	
520	1.62	60	295.7	418.2	21.71	21.0	13.2	
600	1.4	60	899.7	1272.4	28.61	50.3	15.0	

Table 3: Proposed COrE+ frequency channels. The sensitivity is calculated assuming $\Delta\nu/\nu = 25\%$ bandwidth, 50% optical efficiency, total noise of twice the expected photon noise from the sky and the optics of the instrument at 60K temperature. The aggregated CMB sensitivity is $2\,\mu$ K.arcmin in polarization. This is the COrE+ baseline configuration, based on single-frequency, dual polarization detectors (Sec. 3.4).

TES

- Developed in Europe in Paris, Cambridge, Genova ...
- European MUX tecnology demonstrated in the lab (128:1, QUBIC)
- Single-mode TES successfully operated at telescopes (SPT, ACT, BICEP,) and flown on balloons (EBEX, SPIDER) by US teams
- European multimode TES to be flown on a balloon with LSPE (ASI)

KID

- Developed in Europe in Grenoble, Groningen, Cambridge, Rome,
- Operation down to 60-80 GHz demostrated (A&A 580, A15 (2015), astro-ph/1601.01466)
- Large European matrix already operated at a telescope (NIKA & NIKA2)
- For a filled array, 10 aW/sqrt(Hz) sensitivity demostrated in a laboratory setup simulating the radiative background in L2 and 30% bands @100 and 150 GHz Astro-ph/1511.02652; The sensitivity target for use in COrE+ is around 3 aW/sqrt(Hz) for a 35% band.
- Study of cosmic ray effects on-going (space-KIDs, see e.g. Astro-ph/1511.02652). Glitches are very short; cross section slightly larger than for TESs.
- To be flown on balloons (Adv.Blastpol in the USA, OLIMPO and Plan-B in Europe)

MID

- MEMS metal insulator detectors developed at CEA-Leti for Herschel-PACS have been improved to reach aW/sqrt(Hz) sensitivity operating at <100 mK, and in-pixel polarization measurements. European program CESAR developed suitable readout electronics.
- Still to be operated at telescopes

CEB

- Developed in Chalmers
- Instrinsically insensitive to Cosmic Rays
- Still to be operated at telescopes.

Frequency coverage:

Down to 40 GHz : CLASS, see astro-ph/1408.4789

NIKA2 array 200-300 GHz (Grenoble) -> IRAM30m

AMKID array - submm (Groningen) -> APEX ALMA

THz camera for safety scanner (Cardiff)

spring-loaded

Horn-coupled KIDs for CMB (Cardiff + ASU)

– ASI 30 March 2016

Paolo de Bernardis - CORE++ - New

Low-f operation of KIDs demonstrated:

- Catalano et al. A&A 580, A15 (2015)
- Paiella et al. Astro-ph/1601.01466

Al-Ti f > 65 GHz

cryo chain

Figure 14: Left: cooling chain overview. Right: side view of the 4 K box and the FPU. Progress with this design and synergies with ATHENA - Gerard Vermeulen (inst. Néel, Grenoble)

cryo chain

Image from ESA CDF study: «CMB B-modes polarization mission». To be published (April 2016).

Preliminary budgets

- Wet Mass: 2185 kg
- Volume: diameter 4m, h=4.5m
- Momentum: 420 Nms
- Δv: 131 m/s for large amplitude Lissajous orbit around L2
- Power: 1970 W (requires hinged solar panels)
- Communications: 200 Gb/day (K-band, 20 cm derotated antenna)

Image from ESA CDF study: «CMB B-modes polarization mission». To be published (April 2016).

COrE++: Programmatics (very preliminary !)

MODELS:

- Structural Model
- Cryogenic Qualification Model (CQM)
- P/L QM, with a full structure (as for Planck)
- SVM dummy with fittings for the PLM coolers and "PLM warm units", to be used for the cryogenic test qualifying the chain of cryo stages
- SVM Avionics Model (AVM)
- Protoflight Model (PFM) New, no refurbishment from other models
- RFQM (refurbished CQM)
- Mirror models: QM, SM and FM: QM for the CQM and then the RFQM
- Flight spares

INTEGRATION AND VERIFICATION: (Based on Planck approach)

- Cryogenic tests in CSL
- Optical test in CSL
- Videogrammetry test in LSS
- Spin test in LSS
- PFM TB/TB

D	Task Mod	Task Name	Duration	Start	Finish	Predecessors	2015	2016	2017	2018	201	20	20	2021	2022	2023	202	202	25 2	026	2027	2028	2029
1		NG-CryoIrTel (typical phase durations)	2320 days	Wed 01/06/16	Tue 22/04/25		H1 H2	H1 H2	H1 H	-	H1 F	12 H1	H2	H1 H2	H1 H2	H1 H2	-	2 H1	H2 H	1 [H2	H1 H2	H1 H2	H1 H2
2		Phase A (12 month)	260 days	Wed 01/06/16	Tue 30/05/17		-		h		1	0			-								
3		Phase B1 (12-14 month)	305 days	Wed 31/05/17	Tue 31/07/18	2		1			15	F				1				-			
4	-	Intermediate phase (6 month)	130 days	Wed 01/08/18	Tue 29/01/19	2	-		-														
5		Phase B2 (12-18 month)	390 days	Wed 30/01/19	Tue 28 / 20	4	-		P		Č									_			<u> </u>
6	3	Phase C/D (30-48 month)	1040 days	Wed 29/07/20	- 23/07/24	5	Ne						1										
7	8	ESA Contingency (6 month)	130 days	Wed 24/2 24	Tue 21/0-75	0																	
8	-	Phase E (3 month)	65 days	W 22/01/25	Tue 22/04/2													- C					
9	- 3	SRR	0 days	rue 31/07/18	Tue 31/07/18	3					31/07												
10		PDR	0 days	Tue 28/07/20	Tue 28/07/0								28	8/07									
11	8	CDR	0 days	Tue of lead	rue 25/01/22	6SS+390 days							4		♦ 25/0	1							
12	-	QR	0 days	Tue 25/07/23	Tue 25/07/23	11FS+390 day	/5										25/07						
13	3	AR	0 days	Tue 23/07/24	Tue 23/07/24	6											•	23/0	7				
14		Launch	0 days	Tue 22/04/25	Tue 22/04/25	8													22/04	-			
15	-	Instrument FM need date	0 days	Wed 26/10/22	Wed 26/10/22	14SF-650 day	s								4	26/10							
16	*	Instrument TRL6 reached	0 days	Mon 31/12/18	Mon 31/12/18						31/	12											

Image from ESA CDF study: «CMB B-modes polarization mission». To be published (April 2016).

COrE++: Conclusion

- A space mission for CMB polarization like CORE++ is the only way to obtain a reliable detection of B-modes. This cannot be done from the ground only.
- 2. This mission promises outstanding results for cosmology and fundamental physics, and an extremely rich legacy of data for Astrophysics.
- The mission is technically feasible with current European technology and scientific competence, and within the timeframe 2025-2030.
- This mission is expensive, and proper support from ESA member states and other partners is mandatory to fit within the budget of M5.
- 5. The Italian community can have a leading role, but support is required to keep it alive and well.

