Data Analysis: Combination of CMB Datasets

Carlo Baccigalupi

SISSA

on behalf of the Italian CMB community

Overview

- Scientific Relevance
- Milestones
- Roles of the Italian Community
- Development & Implementation

- Scientific Relevance
 - Multi-Frequency Analysis
 - Cross-Correlation with Large Scale Structure (LSS)
- Milestones
 - Short Term (ST, 2016-2019)
 - Middle Term (MT, 2020-2025)
 - Long Term (LT, 2025+)
- Roles of the Italian Community
- Development & Implementation Plan

Scientific Relevance I/II: Multi-Frequency Analysis

Status and Motivation. Planck 2015 confirms that polarized foregrounds are potentially comparable or dominant with respect to the B-mode signal from primordial GWs at any frequency, any location in the sky

Learing and Model Building (ST, MT): multi-frequency correlation of data for studying foregrounds

Data Analysis (all Terms): design of algorithms combining frequencies for foreground removal and characterization of uncertainties at large, intermediate and small angular scales

Support (ST): EU COMPET-5 2016-2019 grant (www.radioforegrounds.eu , Spain, UK, France, Italy)

Scientific Relevance I/II: Multi-Frequency Analysis

Status and Motivation. Planck 2015 confirms that polarized foregrounds are potentially comparable or dominant with respect to the B-mode signal from primordial GWs at any frequency, any location in the sky

Learing and Model Building (ST, MT): multi-frequency correlation of data for studying foregrounds

Data Analysis (all Terms): design of algorithms combining frequencies for foreground removal and characterization of uncertainties at large, intermediate and small angular scales

Support (ST): EU COMPET-5 2016-2019 grant (www.radioforegrounds.eu, Spain, UK, France, Italy)

Large Scales: CMB temperature changes while crossing evolving cosmological structures (Integrated Sachs-Wolfe, ISW)

Intermediate Scales: Gravitational Lensing (GL) deflection by cosmological structures

Small scales: Point Source Populations, spectral distortion crossing Galaxy Clusters (Sunyaev-Zel-dovich, SZ)

Data Analysis: Simulation infrastructure, Cross-Correlation with LSS, de-Lensing of CMB B-mode spectrum

Impact: Dark Matter and Energy, Cluster and Source Catalogues, B-mode power spectrum measurement through de-Lensing

Multi-Probe Relevance: CMBXC WG within the Euclid Consortium

Scientific Relevance II/II: Cross-Correlation with Large Scale Structure

Large Scales: CMB temperature changes while crossing evolving cosmological structures (Integrated Sachs-Wolfe, ISW)

Intermediate Scales: Gravitational Lensing (GL) deflection by cosmological structures

Small scales: Point Source Populations, spectral distortion crossing Galaxy Clusters (Sunyaev-Zel-dovich, SZ)

Data Analysis: Simulation infrastructure, Cross-Correlation with LSS, de-Lensing of CMB B-mode spectrum

Impact: Dark Matter and Energy, Cluster and Source Catalogues, B-mode power spectrum measurement through de-Lensing

Multi-Probe Relevance: CMBXC WG within the Euclid Consortium

Scientific Relevance II/II: Cross-Correlation with Large Scale Structure

Large Scales: CMB temperature changes while crossing evolving cosmological structures (Integrated Sachs-Wolfe, ISW)

Intermediate Scales: Gravitational Lensing (GL) deflection by cosmological structures

Small scales: Point Source Populations, spectral distortion crossing Galaxy Clusters (Sunyaev-Zel-dovich, SZ)

Data Analysis: Simulation infrastructure, Cross-Correlation with LSS, de-Lensing of CMB B-mode spectrum

Impact: Dark Matter and Energy, Cluster and Source Catalogues, B-mode power spectrum measurement through de-Lensing

Multi-Probe Relevance: CMBXC WG within the Euclid Consortium

Figures from Krachmalnicoff et al., 2015, Calabrese et al., 2015

Cross-Correlation of CMB Data

(LSPE×Planck×QUIJOTE×...) using the ASI supported Data Storage and Exploitation Facilities (ASDC, Planck-LFI DPC) for studying diffuse polarized foregrounds

Cross-Correlation with LSS on existing Data and pre-launch Simulations (order of 10⁶ CPU hours/year) within the Euclid Consortium in preparation to Data Analysis

Cross-Correlation of CMB Data

(LSPE×Planck×QUIJOTE×...) using the ASI supported Data Storage and Exploitation Facilities (ASDC, Planck-LFI DPC) for studying diffuse polarized foregrounds

Analysis

Cross-Correlation with LSS on existing Data and pre-launch Simulations (order of 10⁶ CPU hours/year) within the Euclid Consortium in preparation to Data Analysis

Milestones in the Middle Term: 2020-2025

Data Analysis: Foreground Removal for Stage III/IV suborbital Probes, Cross-Correlation between CMB lensing and Euclid Data, de-Lensing of the B-mode power spectra

Opportunities: synergy between ground-based observatories for low and intermediate frequencies, and high foreground monitor probes

Measurement of r to 10⁻² level, measure of **Cross-Correlation** and constraints on the Dark Energy and Matter components

Probes from **Space (ESA/Jaxa/NASA)** and **ground (S4)**, see talks by deBernardis, Piacentini

SCENARIOS

B-modes from Cosmological Gravitational Waves **detected** previously, power spectrum reconstruction with **foreground cleaning and de-Lensing**, consolidation of **Euclid Legacy** through Cross-Correlation with CMB

OR

B-modes from Cosmological Gravitational Waves **undetected**, ultimate (**foreseen limiting sensitivity r~few×10**⁻³) detection attempt through **foreground cleaning and de-Lensing**, consolidation of **Euclid Legacy** through Cross-Correlation with CMB

Roles of the Italian Community, Short Term

Leading role in Planck (all groups) Leading role in LSPE (Rome, Bologna, Ferrara, Genova, Milano, Trieste)

Data Reduction for QUBIC, PILOT (Rome, Milan)

Access to QUIJOTE Data for Polarized Foregrounds Study (SISSA, support from the EU RadioForegrounds Program)

Foreground Study/Removal in the EBEX-IDS (balloon-borne, NASA, proposed), PolarBear and Simons Array (ground-based, NSF+private foundation, ongoing) experiments (SISSA)

Responsability for **CMBXC** Simulation and Preparation for Data Analysis for the **Euclid Consortium** (Euclid Nodes)

Roles of the Italian Community, Middle Term

Exploitation of Data Reduction

and Analysis in the ST through Combination/Cross-Correlation of CMB datasets, foreground study/modeling, design and application of Algorithms

Opportunity for Leading Role in Missions of Opportunity for Ground-Based Observation Facilities and High Frequency Foreground Monitoring

CMBXC Measurements for the **Euclid Consortium**

Roles of the Italian Community, Long Term

Leading role in the preparation of optimal design of the CORE (ESA/ESA+JAXA+NASA) satellite Responsability for CMBXC Cross-Correlation with Euclid (Euclid nodes)

Development & Implementation

- I. Plan for **High Education** targeted to transfer of expertises, Combination of CMB Datasets, to secure Data Analysis and Exploitation
- II. ST: **Exploitation** of ASI supported experiments (LSPE×Planck×...) for Foreground Study, Foreground Cleaning Algorithm Development
- III. ST: support to the selection of optimal design in the Study for Mission of Opportunity for Ground-Based Observation Facilities High Frequency Foreground Monitoring Instruments, complementary, and preparatory to future satellite missions
- IV. Development of CMB-LSS Cross-Correlation Estimators application to Euclid data (ST,MT)
- V. Application of **Foreground Cleaning Algorithms to Sub-orbital experiments**, application to Data, support to Simulations (ST, MT)
- VI. Development of **De-Lensing** techniques for Sub-Orbital experiments, support to **Simulations, Application to Data** (MT)

VII. Transfer of expertise to Satellite/Ground-Network LT projects

Backup

Scientific Relevance I/II: Multi-Frequency Analysis

Status and Motivation. Planck 2015 confirms that polarized foregrounds are potentially comparable or dominant with respect to the B-mode signal from primordial GWs at any frequency, any location in the sky

Learing and Model Building (ST, MT): multi-frequency correlation of data for studying foregrounds

Data Analysis (all Terms): design of algorithms combining frequencies for foreground removal and characterization of uncertainties at large, intermediate and small angular scales

Support (ST): EU COMPET-5 2016-2019 grant (www.radioforegrounds.eu, Spain, UK, France, Italy)

Milestones in the Middle Term: 2020-2025

Data Analysis: Foreground Removal for Stage III/IV suborbital Probes, Cross-Correlation between CMB lensing and Euclid Data, de-Lensing of the B-mode power spectra

Opportunities: synergy between ground-based observatories for low and intermediate frequencies, and high foreground monitor probes

Measurement of r to 10⁻² level, measure of **Cross-Correlation** and constraints on the Dark Energy and Matter components

- Bla
- Bla
- Bla

