GW150914: why so massive?

New Mass-Loss Rates

A. Bressan (SISSA \& INAF)

Basic reasons: mass-loss \& mixing With new mass-loss rates
($\sim Z^{0.85}$ Vink+00,01,05,11; Grafener+ 08) $>\mathbf{M}_{\mathrm{FI}}$ \& \mathbf{M}_{CO} for solar and ${ }^{\sim}$ sub-solar \mathbf{Z} larger by about ~ 2

GW150914: why so massive?

New Mass-Loss Rates

A. Bressan (SISSA \& INAF)

With new mass-loss rates
(Vink+00,01,05,11; Grafener+ 08)
Relevance of the Eddington Factor VMS may still loose significant mass

PARSEC (Bressan+ 12, Tang+ 14, Chen +15)
The Largest Database of Stellar Evolutionary Tracks for Population
Synthesis purposes http://people.sissa.it/~sbressan/parsec.html 14 motalliritucote

ก1 M - 250 M

Remnant Masses
(\& Z-Yields)
(Slemer+ 16)

Adopt:

PARSEC

Massive Stars
(Bressan+12)
$+$
Delayed SN Mod.
(Fryer+12)

See also Spera, Mapelli \& Bressan 2015

Remnant Masses
(\& Z-Yields)
(Slemer+ 16)

Adopt:

PARSEC
Massive Stars
(Bressan+12)
$\underset{\text { Bi-Parametric }}{+}$ SN Model
(Ertl+16)
$+$
M_{Ni} from SN mod. Chieffi \& Limongi 02,06

See also Spera, Mapelli \& Bressan 2015

Fundamental step: validating evolutionary tracks

 as ideal laboratories:$>$ Ongoing Star Formation
$>$ Z from spectroscopy
$>$ HST photometry Girardi+14;Tang+ 14, 15; Rosenfield+14,16;... Test basic model assumptions : mass-loss, mixing

Which Host for GW150914 ?

Answer to this question need a full understanding of the formation path

MASS - METALLICITY in local ellipticals

Closed model

Open model

