

Overview of the LIGO -Virgo EM follow-up program

M.Branchesí Uníversítà dí Urbíno INFN Sezíone dí Fírenze

ASTROPHYSICAL SOURCES emitting transient GW signals detectable by LIGO and Virgo (10-1000 Hz)

Coalescence of binary system of neutron stars and/or stellar-mass black-hole

> MATCHED-FILTER

MODEL SEARCHES

Isoloted neutron-star

UNMODELED SEARCHES

EM emissions

BH-BH mergers

SBO X-ray/UV (minutes,days)

Optical (weeks, months)

Radio (years)

Soft Gamma Ray Repeaters and Anomalous X-ray Pulsars

Radio/gamma-ray Pulsar glitches

EM emissions

EM emissions

Sky Localization of GW transients

Single GW detector → good all-sky monitor, nearly omni-directional But does not have good directional sensitivity, not a pointing instrument!

The sky position of a GW source is mainly evaluated by "triangulation" based on arrival time delay between detector sites

Localization uncertainties of tens to hundreds of sq. degrees

- The EM emission is expected from the high-energy to the radio with different timescales (seconds to years)
- · The GW localization cover wide region of the sky

- · Low latency GW data analysis to detect GW candidates
- To send alert in "real-time"
- · To engage worldwide EM observatories in the EM follow-up

In 2012, LVC agreed policy on releasing GW alerts

"Initially, triggers (partially-validated event candidates) will be shared promptly only with astronomy partners who have signed a Memorandum of Understanding (MoU) with LVC involving an agreement on deliverables, publication policies, confidentiality, and reporting.

After four GW events have been published, further event candidates with high confidence will be shared immediately with the entire astronomy community, while lower-significance candidates will continue to be shared promptly only with partners who have signed an MoU."

LVC GW-EM follow-up program

Seventy-four MoUs involving

Worldwide astronomical institutions, agencies and large/small teams of astronomers

63 teams of astronomers were ready to observe during O1 (September 2015 – January 2016)!

Low-latency GW data analysis pipelines to promptly identify GW candidates and send GW alert to obtain EM observations

GW candidates Sky Localization

EM facilities

Event validation

Low-latency Search to identify the GW-candidates

LIGO-H LIGO-L

Virgo

Unmodeled GW burst search

Matched filter with waveforms of compact binary coalescence

Software to

- select statistically significant triggers wrt background
- Check detector sanity and data quality
- determine source localization

→ a few min → 15/30 min → GW candidate → Hours,days → updates

GW150914, hunting the EM signals...

16 Sept 05:39 UTC notification about the trigger identified by the online Burst analysis during ER8 (GCN 18330)

Burst sky maps

Event time 2015-09-14 09:50:45 UTC FAR 1.178e-08 1/3 yr

The 50% credible region spans about 200 deg² and the 90% region about 750 deg²

➤ 03 Oct 23:41 UTC update → waveform reconstruction appears consistent with expectations for a binary black hole coalescence (GCN 18388)

▶ 12 Jan 2016 update → offline calibration and re-analysis FAR < 1/100 yr (GCN 18851)
▶ 13 Jan update → Refined localizations from CBC parameter estimation (GCN 18858)

EM follow up observations and archival searches

- Twenty-five teams of observers responded to the GW alert
- The EM observations involved satellites and ground-based telescopes around the globe spanning 19 orders of magnitude in frequency across the EM spectrum

Paper submitted to ApJL arXiv:1602.08492

ASKAP, LOFAR, MWA, Fermi/GBM, Fermi/LAT, INTEGRAL, IPN, Swift, MAXI, BOOTES, MASTER, Pi of the Sky, DES/DECam, INAF/GRAWITA, iPTF, J-GEM/KWFC, La Silla–QUEST, Liverpool Telescope, PESSTO, Pan-STARRS, SkyMapper, TAROT, Zadko, TOROS, VISTA

Sky map coverage

The astronomer teams tiled portions of the GW sky maps. Some groups, considering the possibility of a NS merger or core-collapse SN, selected fields based on nearby galaxies or pointed at the Large Magellanic Cloud

Skymap coverage/Depth and Results Summary

Most complete coverage in the gamma-ray down to 10⁻⁷ erg cm⁻² s⁻¹ X-rays coverage complete down to 10⁻⁹ erg cm⁻² s⁻¹ (MAXI), relatively sparse at fainter flux with the Swift XRT

Fermi-GBM sub-threshold search \rightarrow weak signal of 1 sec 0.4 s after the event fluence (1 keV - 10 MeV) = 2.4×10^{-7} erg cm⁻²

FAR 4.79 × 10^{-4} Hz, FAP 0.0022

(Connaughton et al. arXiv:1602.03920)

INTEGRAL → no signal but stringent upper limit (Savchenko et al. 2016 ApJL, 820)

No signal detected by AGILE (Tavani et al. arXiv:1604.00955) and MAXI

Optical facilities together tiled about 870 deg² with a contained probability of 57% of the initial sky map and only 36% of the refined sky map.

The depth varies widely among these facilities

Deep photometry, broadband observations and spectroscopy → candidates to be normal population type Ia and type II SNe, dwarf novae and active galactic nuclei, all very likely unrelated to GW150914

The **radio coverage is also extensive**, with the contained probability of 86%, dominated by **MWA** down to **200 mJy**

EM follow-up of GW150914 demonstrates the capability to cover large area, to identify candidates, and to rapidly activate larger telescopes

The follow-up campaign sensitive to emission expected from BNS mergers at 70 Mpc range The widely variable sensitivity across the sky localization is a challenge for the EM counterpart search

Future EM follow-ups of GW will shed light on the presence or absence of firm EM counterparts for BBH

Number of galaxies within the GW150914 comoving volume of 10^{-2} Gpc³ **10⁵ galaxies** \rightarrow impossible to identify the host galaxy in the absence of EM counterpart detection

Perspectives with Virgo on-line for GW150914 event-like

GW150914 neutrino search...

ANTARES

High-Energy Neutrino Follow-up of GW150914

Search for coincident neutrino candidates within data of IceCube and Antares

The Advanced LIGO and Virgo project schedules, the detectors sensitivity, sky localization accuracy, and prospects for detection rates

Prospects of Observing and Localizing GWs

LVC 2016, Living Reviews in Relativity, 19

Progression of sensitivity and range for Binary Neutron Stars

Larger GW-detectable Universe

Prospects of Observing and Localizing GWs

Observing schedule, sensitivities, and source localization

sensitivity evolution and observing runs

Epoch			2015 - 2016	2016 - 2017	$2017\!-\!2018$	2019 +	2022+ (India)
Estimated run duration			4 months	6 months	9 months	(per year)	(per year)
Burst range/Mpc		LIGO Virgo	$40-60$	$60\!-\!75\ 20\!-\!40$	$75 \!-\! 90 \\ 40 \!-\! 50$	$105 \\ 40\!-\!80$	105 80
BNS range/Mpc		LIGO Virgo	40-80	$80\!-\!120$ $20\!-\!60$	$120\!-\!170\ 60\!-\!85$	$200 \\ 65 - 115$	200 130
Estimated BNS detections			0.0005 - 4	0.006 - 20	$0.04\!-\!100$	0.2 - 200	$0.4\!-\!400$
90% CR	% within mediar	5 deg^2 20 deg^2 n/deg^2	< 1 < 1 480	$\begin{array}{c}2\\14\\230\end{array}$	> 1-2 > 10	> 3-8 > 8-30 —	> 20 > 50 —
searched area	% within mediar	5 deg^2 20 deg^2 n/deg^2	$\begin{vmatrix} 6\\16\\88 \end{vmatrix}$	20 44 29			

Advanced detectors Rate and Range (design sensitivity)

Core-Collapse Supernovae

About 2 per century in a Milky way equivalent galaxy (Li 2011, Cappellaro 1999) 2 per year within 20 Mpc (Li 2011)

Rate of GW-detectable events unknown

GW-signal detectableMilky Way (Ott et al. 2012)Optimistic modelsTens of Mpc (Fryer & New 2011)

BBH merger rate 2 - 400 Gpc⁻³ yr⁻¹ (LVC 2016 arXiv:1602.03842)

The rate is consistent with most BBH rate predictions. Only the lowest can be excluded.

Volume for an equal-mass binary with non-spinning components and total mass 60 Mo, assuming 6 months for O2 and 9 months for O3

Median value for $O2 \rightarrow 10-30$ events for $O3 \rightarrow 40-120$ events

The expected number of highly significant events is > 1 at 90% confidence for any experiment surveying about twice <VT>o

Binary Black-Hole horizon and surveyed volume

Horizon distance as function of chirp mass/total mass for a 8 SNR detection of equal mass, non spinning BBH mergers

Surveyed comoving volume $R = \text{constant merger rate} \rightarrow$ expected number of detections during an observing run of

duration T is given by (R*V*T)

- EM follow-up program: Low latency GW candidates from low and high mass systems
- Possibility to receive many astrophysical GW events
- Be prepared to catch the EM counterpart and/or identify the host galaxy

