SON OF X-SHOOTER)SOXS(

SERGIO CAMPANA
OSSERVATORIO ASTRONOMICO DI BRERA
ON BEHALF OF THE SOXS CONSORTIUM

WHAT IS SOXS

ESO call for new instruments at NTT (06/2014)

Proposal submission (02/2015)

SOXS selected by ESO $(05 / 2015)$ out of 19

Single-object spectrograph $\mathrm{R} \sim 4,500$ from U to H (350-17500 nm) @ ESO/NTT 1 hr - SNR~10 - R~20-20.5

Similar to X-shooter
.. but also different, only two arms with partial overlap around 870 nm to cross-calibrate spectra

SOXS IS FULLY DEDICATED TO THE SPECTROSCOPIC FOLLOW UP OF TRANSIENT

- Minor planets and asteroids
- Young stellar objects
- Planetary transits
- X-ray binary transients
- Novae
- Supernovae (Ia, CC)
- GRB

- GW-\&neutrino EM counterparts
- Radio sky transients \& fast radio bursts

WHY SOXS?

Spectroscopic machine for the transient sky.
Even now with PESSTO in place $>70 \%$ of newly discovered transients remain without spectroscopic follow-up.

In the near future years there will be many imaging survey wide-field telescopes (iPTF, DES, Pan-STARRS, LSST) as well as high-energy transients (Swift, INTEGRAL, MAXI), GAIA-alters GW-alters, TeV alerts, etc. but very limited spectroscopic follow-up

> SOXS@NTT will have $150 \mathrm{n} / \mathrm{yr}$ (for 5-6 yr)
> $\sim 3,000-4,000$ spectra/yr

STRUCTURE

Italian lead

Large Italian involvement
13 INAF institutes
11 for science \& 7 for hardware

SOXS SCIENCE BOARD

S. Campana (INAF-OABrera) - Italy
E. Cappellaro (INAF-OAPadova) - Italy
M. Della Valle (INAF-OANapoli) - Italy
A. De Ugarte Postigo (IAA-CSIS) - Spain
J. Fynbo (Dark-NBI) - Denmark
M. Hamuy (Millenium Inst.) - Chile
G. Pignata (Millenium Inst.) - Chile
S. Smartt (Univ. Belfast) - UK
S. Basa (LAM) - France
L. Le Guillou (LNPHE) - France
B. Schmidt (ANU) - Australia
M. Colless (ANU) - Australia
A. Gal-Yam (Weizmann) - Israel
S. Mattila (FINCA) - Finland

(ORIGINAL) TIMELINE

Project phase	Aprrox. start	Approx end	Duration
Phase A	$12 / 2015$	$04 / 2016$	5 months
Phase B	$05 / 2016$	$10 / 2016$	5 months
Phase C	$11 / 2016$	$08 / 2017$	10 months
Phase D	$09 / 2017$	$12 / 2019$	28 months
Phase E	$12 / 2019$	>2023	

good timing with GW experiments (4 detectors) LSST - CTA - SKA

WHAT CAN DO SOXS FOR GW

PanSTARSS and PESSTO
Smartt et al. 2016
442 deg $^{2}-4.2 \%$ probability 57 transients

me	$\begin{gathered} \hline \mathrm{RA} \\ (\mathrm{~J} 2000) \end{gathered}$	$\begin{aligned} & \hline \text { Dec } \\ & (\mathrm{J} 2000) \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{RA} \\ & (\mathrm{~J} 2000) \end{aligned}$	$\begin{aligned} & \hline \hline \text { Dee } \\ & (\mathrm{J} 2000) \end{aligned}$	$\begin{aligned} & \hline \hline \text { Discovery } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & \hline \hline \text { Discovery } \\ & \text { MJD } \end{aligned}$	$\begin{aligned} & \text { Disic } \\ & \text { mag. } \end{aligned}$	t.
PS15cbm	084919.85	+034817.8	132.33771	+3.80994	20150917.62	57282.62	18.55	${ }_{\text {i }}^{1}$
Scew	3.60	${ }^{+043156.1}$	134.37750 138383		${ }^{201501597.63}$		1.31	$i_{\text {P1 }}$
	O9 013	${ }_{\text {coser }}^{+061047.3}$	${ }_{\text {1238.3483 }}^{12.51629}$	${ }_{+}^{+6.1 .7981}$	20150919.63	57	(132	${ }_{\text {ipl }}^{\substack{\mathrm{P}_{1} \\ 2 p_{1}}}$
		+04	133.84604	+4.68861				1
	093411.58	1645.2	${ }_{123.54825}$				${ }_{19.53}$	${ }_{\text {ipl }}$
							,	
		+1011					13	
	${ }^{09} 52355.14$. 64		\% 72	
Ps15ckit	0945	+09583	146.49	+9.97339	20151003.65		17.57	yp1
	09	+08			20151013.60		20.02	
		-021013.3					退	
	101	-06 3046.9	153.	-			${ }^{2} .51$	
							9.40	
							55	
	100145.13						. 76	
	101329.31			-10.00	${ }^{20151014.62}$		943	${ }^{\text {ip } 1}$
${ }^{\text {Pssisck }}$	${ }^{109}$		102.40	+12.	${ }_{2}^{20151010102}$		20.94	
		+114010.4					31	
				$+6.9$.90	$i_{\text {P1 }}$
Ps	09524.786 094980.25	${ }_{-0638}^{+01383}$	${ }^{1148.20317}$		2015101.61	${ }^{575310.61}$	9.82	
${ }_{\text {PS }}$	${ }^{09} 9598703$	${ }_{\substack{-01363 \\-035 \\-03 \\ \hline 0}}$	149.2776496	-1.8.89008	2015101.62	5731	${ }_{19.35}^{20.14}$	${ }_{\text {ip1 }}$
	09482						20.19	
	543	-04 07			20151015.62		32	
	${ }_{10}$	${ }_{-1054}$	115.4 153 153	-2.17272	${ }_{20}^{20}$		27	
${ }_{\text {Psiscowk }}$	101355	${ }_{-12524}$	153.480	${ }_{-12.88}$	${ }_{20151015.63}^{201505}$		11	
		+004434.7					96	
${ }_{\text {PSIII }}$	O854	${ }_{+}^{+0254}$	${ }_{1}^{148.0}$	${ }_{+}^{+7.90014}$	2		${ }_{21.82}$	
	08541							
	101621.58				${ }^{20151021.61}$		${ }^{20.25}$	
${ }_{\text {Psitage }}$	1018208 101024	${ }_{\text {- }}^{\text {-103128 }}$	${ }_{1}^{1524 .}$	${ }_{-9.552}^{10.522}$. 47	
	10	-173138.7	15.514550		2		97	
							20.71	
	109	-0909 46.3		${ }_{-4}^{-9.192}$	${ }_{201}^{201}$	${ }_{57318.60}^{57363}$	${ }_{20.80}^{20.34}$	${ }_{\text {Pr }}$
		+041					20.68	
	${ }^{09}$							
${ }_{\text {PSISISdiw }}$	O944	${ }_{+04}+15452.1$	14.50 .9554	${ }_{+1.9447}$			21.00	${ }_{\text {P1 }}$
							${ }_{20.32}^{21.11}$	${ }_{\text {P1 }}$
							20.55	${ }_{\text {iP }}$
		011702.0						

COMBINED FOLLOW-UP: PHOTOMETRY + SPECTROSCOPY

Instrument	Band ${ }^{\text {a }}$	Depth ${ }^{\text {b }}$	Time ${ }^{\text {c }}$	$\begin{gathered} \text { Area } \\ \left(\operatorname{deg}^{2}\right) \end{gathered}$	Contained probability (\%)				GCN
					cWB	LIB	BSTR.	LALInf.	
Optical									
DECam	i, z	$i<22.5, z<21.5$	3.9, 5, 22	100	38	14	14	11	18344, 18350
iPTF	R	$R<20.4$	3.1, 3, 1	140	3.1	2.9	0.0	0.2	18337
KWFC	i	$i<18.8$	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361
MASTER	C	<19.9	-1.1, 7, 7	590	56	35	55	49	18333, 18390, 18903, 19021
Pan-STARRS1	i	$i<19.2-20.8$	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394
La Silla-QUEST	g, r	$r<21$	3.8, 5, 0.1	80	23	16	6.2	5.7	18347
SkyMapper	i, v	$i<19.1, v<17.1$	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349
Swift UVOT	u	$u<19.8 \text { (gal.) }$	$2.3,1,1$	3	0.7	1.0	0.1	0.1	18331
	u	$u<18.8 \text { (LMC) }$	$3.4,1,1$						18346
TAROT	C	$R<18$	2.8, 5, 14	30	15	3.5	1.6	1.9	18332, 18348
TOROS	C	$r<21$	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338
VST	r	$r<22.4$	2.9, 6, 50	90	29	10	14	10	18336,18397

SOXS@NTT

$150 \mathrm{n} / \mathrm{yr}$ for $5-6 \mathrm{yr}$
~3,000-4,000 spectra/yr

