SON OF X-SHOOTER)SOXS(

SERGIO CAMPANA OSSERVATORIO ASTRONOMICO DI BRERA ON BEHALF OF THE SOXS CONSORTIUM

WHAT IS SOXS

ESO call for new instruments at NTT (06/2014)

Proposal submission (02/2015)

SOXS selected by ESO (05/2015) out of 19

Single-object spectrograph R~4,500 from U to H (350-17500 nm) @ ESO/NTT 1 hr - SNR~10 - R~20-20.5

Similar to X-shooter

.. but also different, only two arms with partial overlap around 870 nm to cross-calibrate spectra

SOXS IS FULLY DEDICATED TO THE SPECTROSCOPIC FOLLOW UP OF TRANSIENT

- Minor planets and asteroids
- Young stellar objects
- Planetary transits
- X-ray binary transients
- Novae
- Supernovae (Ia, CC)
- GRB
- GW-&neutrino EM counterparts
- Radio sky transients & fast radio bursts

WHY SOXS?

Spectroscopic machine for the transient sky. Even now with PESSTO in place >70% of newly discovered transients remain without spectroscopic follow-up.

In the near future years there will be many <u>imaging</u> survey wide-field telescopes (iPTF, DES, Pan-STARRS, LSST) as well as high-energy transients (Swift, INTEGRAL, MAXI), GAIA-alters GW-alters, TeV alerts, etc. but very limited spectroscopic follow-up

> SOXS@NTT will have 150 n/yr (for 5-6 yr) ~3,000 - 4,000 spectra/yr

STRUCTURE

Italian lead

Large Italian involvement 13 INAF institutes 11 for science & 7 for hardware

SOXS SCIENCE BOARD

S. Campana (INAF-OABrera) - Italy E. Cappellaro (INAF-OAPadova) - Italy M. Della Valle (INAF-OANapoli) - Italy A. De Ugarte Postigo (IAA-CSIS) - Spain J. Fynbo (Dark-NBI) - Denmark M. Hamuy (Millenium Inst.) - Chile G. Pignata (Millenium Inst.) - Chile S. Smartt (Univ. Belfast) – UK S. Basa (LAM) – France L. Le Guillou (LNPHE) - France B. Schmidt (ANU) – Australia M. Colless (ANU) - Australia A. Gal-Yam (Weizmann) – Israel S. Mattila (FINCA) – Finland

(ORIGINAL) TIMELINE

Project phase	Aprrox. start	Approx end	Duration
Phase A	12/2015	04/2016	5 months
Phase B	05/2016	10/2016	5 months
Phase C	11/2016	08/2017	10 months
Phase D	09/2017	12/2019	28 months
Phase E	12/2019	>2023	

good timing with **GW experiments** (4 detectors) - LSST - CTA - SKA

WHAT CAN DO SOXS FOR GW

135.0 RA (deg)

120.0

150.0

-15.0

PanSTARSS and PESSTO

Smartt et al. 2016

442 deg² -4.2% probability 57 transients

Table 2. Transient candidates in the field of GW150914 (56 in total). Discovery dates refer to the date of the first detection by Pan-STARRS. For reference, GW150914 was discovered at 20150914.41 (MJD 57279.41).

Name	RA (12000)	Dec	RA (12000)	Dec (12000)	Discovery	Discovery	Disc	Disc.
-	(J2000)	(J2000)	(J2000)	(J2000)	Date	MJD	mag.	filt.
PS15cbm	08 49 19.85	+03 48 17.8	132.33271	+3.80494	20150917.62	57282.62	18.55	i _{P1}
PS15ccw	08 57 30.60	+04 31 56.1	134.37750	+4.53225	20150917.63	57282.63	19.31	iP1
PS15cci	09 13 22.76	$+06\ 10\ 47.3$	138.34483	+6.17981	20150919.63	57284.63	18.32	$i_{\rm P1}$
PS15ccx	08 18 03.91	$+04 \ 18 \ 04.2$	124.51629	+4.30117	20150919.63	57284.63	19.42	$z_{\rm P1}$
PS15ccv	08 55 23.05	$+04 \ 41 \ 19.0$	133.84604	+4.68861	20150922.62	57287.62	20.03	$i_{\rm P1}$
PS15cel	09 34 11.58	$+05 \ 46 \ 45.2$	143.54825	+5.77922	20150923.63	57288.63	19.53	$i_{\rm P1}$
PS15cki	09 28 27.24	$+08 \ 00 \ 51.5$	142.11350	+8.01431	20150923.64	57288.64	19.17	$z_{\rm P1}$
PS15cej	09 35 19.41	$+10 \ 11 \ 50.7$	143.83087	+10.19742	20151002.62	57297.62	18.13	$i_{\rm P1}$
PS15cek	09 36 41.04	+10 14 16.2	144.17100	+10.23783	20151002.63	57297.63	17.24	$z_{\rm P1}$
PS15cke	09 52 35.14	-07 36 32.0	148.14642	-7.60889	20151002.64	57297.64	16.72	$z_{\rm P1}$
PS15ckf	09 45 57.71	$+09\ 58\ 31.4$	146.49046	+9.97539	20151003.65	57298.65	17.57	$y_{\rm P1}$
PS15cwj	09 27 44.89	+08 31 32.1	141.93704	+8.52558	20151013.60	57308.60	20.02	$i_{\rm P1}$
PS15cwi	09 21 31.27	$+05\ 10\ 26.8$	140.38029	+5.17411	20151013.61	57308.61	20.43	i _{P1}
PS15ckm	09 43 47.15	-02 10 13.3	145.94646	-2.17036	20151013.61	57308.61	19.57	i _{P1}
PS15ckj	10 07 58.59	-02 29 47.9	151.99412	-2.49664	20151013.61	57308.61	18.31	iP1
PS15cko	10 14 01.69	-06 30 46.9	153,50704	-6.51303	20151013.62	57308.62	19.51	ipi
PS15ckh	09 24 55.83	+02 19 25.1	141.23263	+2.32364	20151013.62	57308.62	19.40	iP1
S15cvz	10 05 41 49	+01 05 33 2	151 42288	+1.09256	20151013 62	57308 62	19.55	int
S15cvv	10 01 45 13	-00.36.06.8	150 43804	-0.60189	20151013.63	57308 63	19.76	int
PS15ckn	10 13 20 31	-10 00 06 1	153 37213	-10.00169	20151014.62	57300.62	10.10	in
PS15ckk	10 08 48 60	-09 54 50 7	152 20250	-9.91408	20151014.02	57309.62	16.43	in
DS15dfa	00 21 27 60	112 01 28 0	140 40667	112 02722	20151015.60	57210.60	20.04	in
DC15JC	09 21 37.00	+12 01 38.0	120.601007	+12.02722	20151015.00	57310.00	20.94	² P1
015	09 18 29.04	+11 40 10.4	149 50420	+11.00930	20151015.00	57210.61	21.01	2P1
SIJCWIII	09 50 01.05	+00 38 12.0	142.00429	+0.97017	20151015.01	57310.01	20.90	² P1
Sibdry	09 52 48.76	+00 38 04.5	148.20317	+0.03438	20151015.61	57310.61	19.82	² P1
PSIDCVV	09 49 30.25	-01 30 37.5	147.37004	-1.01042	20151015.62	57310.62	20.14	2P1
Slocmr	09 57 03.59	-03 53 24.3	149.20490	-3.89008	20151015.62	57310.62	19.30	² P1
S15cmq	09 48 22.97	-03 27 41.4	147.09571	-3.46150	20151015.62	57310.62	20.19	iP1
SIbevx	09 54 35.48	-04 07 22.3	148.64783	-4.12286	20151015.62	57310.62	20.32	² P1
PS15dfv	09 41 38.31	-02 10 21.8	145.40963	-2.17272	20151015.62	57310.62	20.83	i _{P1}
PS15cwa	10 13 18.75	-10 54 43.9	153.32812	-10.91219	20151015.63	57310.63	20.27	$i_{\rm P1}$
PS15cwk	10 13 55.42	-12 52 49.2	153.48092	-12.88033	20151015.63	57310.63	20.11	$i_{\rm P1}$
PS15cms	09 58 35.10	+00 44 34.7	149.64625	+0.74297	20151017.62	57312.62	19.93	$i_{\rm P1}$
PS15cvw	09 52 09.25	+07 26 48.3	148.03854	+7.44675	20151018.61	57313.61	19.86	$i_{\rm P1}$
PS15cmp	08 54 24.40	+03 54 00.5	133.60167	+3.90014	20151019.58	57314.58	21.82	$r_{\rm P1}$
PS15crh	08 51 16.19	$+04 \ 03 \ 57.9$	132.81746	+4.06608	20151019.58	57314.58	21.39	$r_{\rm P1}$
PS15cwh	08 54 15.18	+03 04 59.0	133.56325	+3.08306	20151019.58	57314.58	22.09	$r_{\rm P1}$
PS15cri	09 36 50.66	+02 31 20.0	144.21108	+2.52222	20151021.60	57316.60	20.67	i _{P1}
PS15cwb	10 16 21.58	-11 00 10.5	154.08992	-11.00292	20151021.61	57316.61	20.25	$i_{\rm P1}$
PS15dgc	10 18 20.86	-10 31 28.3	154.58692	-10.52453	20151021.61	57316.61	20.42	$i_{\rm P1}$
S15cwe	10 10 24.74	-09 33 10.0	152.60308	-9.55278	20151021.63	57316.63	20.47	i _{P1}
PS15crk	10 30 03.48	-17 31 38.7	157.51450	-17.52742	20151021.63	57316.63	19.97	ip1
PS15dgb	10 04 43.54	-15 00 03.8	151.18142	-15.00106	20151021.63	57316.63	20.71	iP1
PS15dga	10 04 42.37	-09 31 14.8	151,17654	-9.52078	20151021.63	57316.63	20.34	ipi
PS15dfx	09 50 52.07	-04 09 46.3	147.71696	-4.16286	20151023.60	57318.60	20.80	iP1
PS15cwg	10 19 19 55	-09 16 01 2	154 83146	-9 26700	20151023.61	57318 61	20.39	in
PS15cri	09 42 42.16	+02.18.09.8	145.67567	+2.30272	20151023.62	57318.62	20.88	ip1
OS15dfz	09 54 59 64	+04 14 08 1	148 74850	+4.23558	20151023.62	57318 62	20.68	in
PS15dfu	09 34 24 28	+0648010	143 60117	+6.80028	20151023.62	57318 62	21.10	ipi
PS15dft	00 33 00 29	+10 28 02 2	1/3 28008	+10.46729	20151023.62	57318 62	10 /1	in
PS15dfw	09 44 11 65	+10 28 02.2	146 04854	+1 91447	20151023.02	57310.60	21.00	ip1
DC15	00 50 01 00	-04 34 32.1	140.04604	74.51447	20151024.00	57910.64	21.00	^t P1
DC15-	10 05 02 20	-03 48 04.3	149.70008	-3.80119	20151024.61	57319.01	21.11	iP1
rolocqx	10 05 03.70	-00 29 44.7	151.20542	-0.49979	20151024.61	57319.01	20.32	² P1
r515dgd	10 27 26.07	-14 58 20.1	156.85862	-14.97225	20151024.61	57319.61	20.55	iP1
PS15cqw	09 45 06.43	$+01\ 17\ 02.0$	146.27679	+1.28389	20151025.60	57320.60	20.99	² P1
	10.08.06.70	-14 25 08 5	152 02792	-14.41903	20151025.62	57320.62	20.93	2131

COMBINED FOLLOW-UP: PHOTOMETRY + SPECTROSCOPY

				Area	Contained probability (%)			ity (%)	
Instrument	Band ^a	Depth ^b	Time ^c	(deg^2)	cWB	LIB	BSTR.	LALInf	GCN
Optical									
DECam	<i>i. z</i>	i < 22.5, z < 21.5	3.9. 5. 22	100	38	14	14	11	18344, 18350
iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2	18337
KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361
MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	49	18333, 18390, 18903, 19021
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394
La Silla–QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	18347
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	18331
	u	u < 18.8 (LMC)	3.4, 1, 1						18346
TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	18332, 18348
TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338
VST	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	18336, 18397

SOXS@NTT 150 n/yr for 5-6 yr ~3,000 - 4,000 spectra/yr