Michela Mapelli

INAF-Osservatorio Astronomico di Padova

FIRB 2012 fellow MERAC 2015 prize

Massive stellar black holes: formation and dynamics

Collaborators: <mark>Mario Spera, Sandro Bressan,</mark> Brunetto Ziosi, Marica Branchesi, Alessandro Trani, Elisa Bortolas, Paolo Esposito, Luca Zampieri

Roma, April 11th 2016

OUTLINE:

1. the masses of GW150914: why are they important?

2. the main ingredients: stellar winds and direct collapse

- **3. dynamics plays `gooseberry'**
- 4. what has been done?
- **5.** what has still to be done?
- **5. technical issues!**

1. the masses of GW150914: why are they important?

36 (+5,-4) Msun 29 (+4,-4) Msun GW150914 shows that

- **1. BH-BH binaries exist**
- 2. they can merge in a Hubble time
- 3. massive stellar BHs exist i.e. stellar BHs with mass >25 Msun (Mapelli+ 2009)

Abbott+2016a,b,c..

1. the masses of GW150914: why are they important?

Massive stellar BHs exist i.e. stellar BHs with mass >25 Msun (Mapelli+ 2009)

1. the masses of GW150914: why are they important?

Massive stellar BHs exist i.e. stellar BHs with mass >25 Msun (Mapelli+ 2009)

Dynamical mass measurements of ~10 BH masses in MW X-ray binaries

compilation from Orosz+ 2003, Ozel+ 2010

2. the main ingredients: stellar winds and direct collapse THEORETICAL MODELS of BH MASS DEPEND ON:

1. STELLAR WINDS:

Massive stars (>30 Msun) might lose >50% mass by winds Stellar wind models underwent major upgrade in last ~10 yr (Vink+ 2001, 2005; Bressan+ 2012; Tang, Bressan+ 2014; Chen, Bressan+ 2015)

Mass loss depends on metallicity

 $\dot{M} \propto Z^{\alpha} \qquad \alpha \sim 0.5 - 0.9$

2. SUPERNOVA:

Direct collapse: if final mass of star >30-40 Msun there is no supernova and most star mass becomes BH (Fryer+ 1999, 2001; Heger+ 2003; Mapelli+ 2009)

1. + 2. = METAL-POOR STARS PRODUCE MORE MASSIVE BH

Heger et al. (2003)

My cartoon from Heger et al. (2003)

What about intermediate metallicity between zero and solar?

Model	Stellar Evolution	Supernova Model	Max. BH mass at Z~0.01 Zsun
MM+ 2009	Maeder+ 1992	Fryer+ 1999	~50 Msun
MM+ 2010	Portinari+ 1998	Fryer+ 1999	~80 Msun
Belczynski+ 2010	Hurley+ 2000 and Vink+ 2001	Fryer+ 1999	~80 Msun
Fryer+ 2012	Hurley+ 2000 and Vink+ 2001	Fryer+ 2012	~80 Msun
MM+ 2013,2014	SeBa (Portegies Z and Vink+ 2001	wart+ 2001)	~85 Msun
Spera, MM & Bressan 2015	PARSEC (Bressan+ 2012; Tang, Bressan+ 2014; Chen, Bressan+ 2015)	O'Connor+2011 Fryer+ 2012 Ertl+ 2015 (6 different SN models compared)	~130 Msun

What about intermediate metallicity between zero and solar?

Spera, MM & Bressan 2015 – used as fig.1 by Abbott+ 2016 paper on Astrophysical implications of LIGO detection

LIGO observed a BH-BH BINARY How do BH-BH (or BH-NS, NS-NS) binaries form?

1) PRIMORDIAL BINARY

2) DYNAMICALLY FORMED BINARY

LIGO observed a BH-BH BINARY How do BH-BH (or BH-NS, NS-NS) binaries form?

1) PRIMORDIAL BINARY:

2 stars form from same gas cloud and evolve into 2 BHs NOT SO EASY: mass transfer, common envelope, SN kicks

Studied via POPULATION SYNTHESIS CODES: integration of ISOLATED binaries (Starlab, Portegies Zwart+ 2001; MM+2013; BSE, Hurley+ 2002; StarTrack, Belczynski+ 2010; SEVN, Spera+ 2015)

LIGO observed a BH-BH BINARY How do BH-BH (or BH-NS, NS-NS) binaries form?

2) DYNAMICALLY FORMED BINARY:

2 BHs enter a binary dynamically only in dense clusters, but stars form in dense clusters

>90% BH-BH binaries form dynamically in star clusters Exchanges favour formation of massive BH-BH binaries (Ziosi, MM+ 2014)

LIGO observed a BH-BH BINARY How do BH-BH (or BH-NS, NS-NS) binaries form?

2) DYNAMICALLY FORMED BINARY:

Requires N-body simulations of star clusters coupled with stellar evolution

GPU simulations

MM+ 2013, 2014, Ziosi, MM+ 2014, MM 2016, Kimpson+ 2016

LIGO observed a BH-BH BINARY How do BH-BH (or BH-NS, NS-NS) binaries form?

2) DYNAMICALLY FORMED BINARY:

Chirp masses of BH-BH systems accounting for both primordial and dynamical binaries

From Ziosi, MM+ 2014

4. what has been done?

OUR TEAM @ INAF: http://web.pd.astro.it/mapelli/group.html funded ONLY by COMPETITIVE GRANTS (FIRB, PRIN, MERAC)

1. most up-to-date model for the mass of BHs, used by the LIGO collaboration to constrain Z:

WE PREDICTED MASSIVE BHs before LIGO detection

2. we investigate the dynamical processes:

We found that 90% BH-BHs form DYNAMICALLY

MM+ 2009, 2010, 2013; MM & Zampieri 2014; Ziosi, MM, Branchesi, Tormen 2014; Spera, MM & Bressan 2015

4. what has still to be done (for discussion)?

EVERYTHING SOLVED?

NO: we can just reject models with BH mass < 20 Msun

OPEN QUESTIONS for THEORISTS @ INAF:

STELLAR EVOLUTION:

- uncertainties in supernova model
- binary evolution contains free parameters (COMMON ENVELOPE is the black beast)

DYNAMICS:

- initial conditions might be wrong
 - (NO GAS, few primordial binaries!!!)
- role of mergers between stars (runaway collision scenario)
- processes as Spitzer's instability and Kozai not investigated \rightarrow can change the merger rate by orders of magnitude

ELECTROMAGNETIC COUNTERPARTS:

- our study focussed on BHs, still low statistics for NSs
 - → how many EM counterparts do we expect and what are they?

5. technical issues (for discussion)

Dynamical simulations are computationally expensive:

1 BH-BH merger every ~ 100 simulated star clusters

Each simulation requests ~ 100 GPU hours

→ 10 000 GPU hours for a single MERGER!!!

RESOURCES:

- We have a 64 core machine @ OAPD (FIRB2012 project)

 We obtain more time @ CINECA via competitive proposals, but CINECA decides what clusters to buy (these are often non-suitable x astro people)

WE NEED MORE COMPUTATIONAL FACILITIES TO REMAIN COMPETITIVE !!!!

Tier 1 machine @ INAF : a crazy thing? Can be used by theorists and observers x data- analysis

Our team:

http://web.pd.astro.it/mapelli/group.html

Mario Spera

Brunetto Ziosi

Alessandro Trani

MAN POWER: we are a small group @ INAF-Padova funded ONLY by COMPETITIVE GRANTS (FIRB, PRIN, MERAC)

(1 staff member, 1 postdoc, 2 PhD students, 1 ex-PhD student + several collaborators @ INAF and other institutes)

Conclusions

- After LIGO, we know that BH-BH exist, merge in a Hubble time, and that MASSIVE BHs (>25 Msun) exist
- Massive BHs have been successfully predicted by a INAF team: we have the expertise @ INAF
 We are not alone @ INAF: see next talk by Marco Limongi
- Understanding massive BHs requires models of stellar evolution, binary evolution and DYNAMICS of stellar objects: INTERDISCIPLINARY AND COMPLEX
- Future challenges include: full description of dynamics, understanding common envelope, formation of NS-NS
- For the discussion: models of double compact-object binaries require COMPUTING TIME with GPUs

From Spera et al. 2015

based on SN model by Ertl et al. 2015 M4 is the mass enclosed within radius where dimensionless entropy per baryon is 4 2 parameters: M4 and the compactness of Fe core

Comparison of 5 SN models at Z=0.002=0.1 Zsun (consistent with GW150914)

From Fig. 13 Spera et al. 2015 Comparison of 3 stellar evolution models at Z=0.002=0.1 Zsun (consistent with GW150914)

5. technical issues!

Dynamical simulations are computationally expensive 1 BH-BH merger every ~ 100 simulated star clusters → parameter space investigation is missing

Each simulation requests > 2 weeks on CPUs $\sim 1 - 100$ hr on GPUs

We have a 64 core machine @ OAPD (18k euro from FIRB2012 project)

CINECA: high success rate of proposals but CINECA decides what clusters to buy (not suitable to astro people)

WE NEED MORE COMPUTATIONAL FACILITIES TO BE COMPETITIVE !!!!

Tier 1 machine @ INAF : a crazy thing? ~1-2 M EUR first investment (obsolescence ~ 5 yr) ~100k EUR maintenance /yr Can be used by theorists and observers x data- analysis