JWST and the Assembly of galaxies 2 < z < 7

Simon Lilly

JWST Interdisciplinary Scientist NIRCam Science Team member MIRI Science Team member

ETH Zurich

What we are trying to explain

Conversion of baryons into stars as seen today

Peak conversion efficiency in DM haloes of $10^{12} \ M_{\odot}$

What we are trying to explain

From Birrer, SJL et al 2014 toy-SAM, see also Behroozi et al 2013

Cosmic history of star-formation

Why 7 < z < 2.5 will be important for JWST

- Cosmologically: From reionization up to the peak in star-formation, galaxy evolution limited by available sites
- Operationally: Hα is at 2.3 < λ < 5 μm (i.e. inaccessible from ground): very strong non-resonant line relevant for SFR, kinematics, metallicities and diagnostics etc.

1. What is quenching star-formation in galaxies, and what is keeping them quenched?

Note: this happens at more or less the same mass at all epochs since z ~ 4!

- Halo quenching: i.e. heating of infalling gas in shocks, prevention of cooling, interruption of gas supply
- AGN quenching: energy injection linked to SMBH ("quasar phase" and/or "radio phase"), ejection of gas from galaxies and/ or heating of gas in haloes
- Mergers leading to star-bursts (variant of AGN scenario?) and consumption/ejection of gas.
- "morphological quenching", "gravitational quenching":
 internal processes controlling star-formation efficiency related
 to stability of disks etc.

2. When is a Main Sequence established and what causes it?

- The Main Sequence is diagnostic of quasi-steady-state SF vs. episodic starburst SF and the regulation of starformation
- Is the MS regulated in the same way at high z >> 2 as locally? <u>Metallicity</u> as a diagnostic of regulation (e.g. Lilly+13)

- 3. What is the relative importance of in situ star-formation and merging in adding mass to star-forming galaxies? And to most massive passive galaxies?
 - sMMR increases as sSFR, because both trace halo growth?
 - Prevalence of disks at z < 2. At higher redshift?
 - Size growth for passive early type galaxies

SINFONI AO H α observations at VLT: SINS-zC survey: Genzel, Forster-Schreiber, SJL et al.

4. What is the role of galaxy structure and morphology?

Basic problem: we do not really know how spheroids were formed

Tautological aspect

Steady-state SF in disks!

A causal connection, but in which direction?

- Massive bulges quench star-formation (SMBH? or gravitational quenching?)
- Quenching produces massive bulges (through mergers?)

Or an indirect connection

age-density-structure link

5. What is relationship between galaxies and their central supermassive black-holes?

- Local scaling relations of m_{BH} with galaxy properties: σ , m_{bulge} , m_{stars}
- There is certainly broad "coevolution", but also evidence for evolution in mean m_{BH}-m_{star} relation(s)
- Possible role of AGN in quenching star-formation in galaxies and maintaining quenched state.

Key questions and emerging answers at 0 < z < 2.5

How is stellar mass added to normal SF galaxies around M*?

- In situ SF

• 80%

- Mergers

• 10%

Merger-induced star-bursts

• 10%

What controls the (decline of the) • Gas content driven by SFR in most galaxies?

the accretion of gas from the halo

What changes m_{star}/m_{halo} as $f(m_{halo})$? • SN-driven winds as evidenced by Z(m)

What physically quenches SF at M > M*?

Don't know: possibilities include

- AGN energy injection into halo gas
- Hot/cold accretion of gas driven by halo physics
- AGN or SN ejection of gas from galaxies
- Structural quenching

Clearly important but unclear:

- Most SF in rotating disks (but higher σ , clumpier, at high z)
- Dense old bulges present at z = 2.5
- SF galaxies (and quenched passives) denser at high z (as are their haloes)

Origin and role of structure and morphology?

The global high-z multi-wavelength observatory "system"

Wide field multi-band opt-NIR imaging

- Subaru
- CFHT
- UKIRT
- ESO/VISTA

••••

Targets for single object follow-up

- mm IFS with ALMA/ IRAM pdB
- opt/IR IFS VLT/SINFONI VLT/MUSE etc

Space-based opt+NIR high resolution imaging

Hubble Space Telescope

The deep survey fields

- HDF/UDF
- ECDFS/GOODS
- EGS, SSA22
- COSMOS

Images at other wavelengths

- XMM + Chandra (X-ray)
- Galex (UV)
- Spitzer (mid-IR)
- Herschel (far-IR)
- JCMT & APEX (mm)
- Jansky VLA (cm)

Deep spectroscopic surveys for redshifts, structure (groups) and astrophysical information

- ESO/VLT
- Keck, Magellan

But at least two reasons to expect z > 2.5 to be different

Halo mass M* is comparable to galaxy M*

- Biggest changes to halo $\phi(m)$ are occurring on galactic rather than group/cluster scales as later. Buildup in global SFRD due to increasing number of 10^{12} M haloes
- Distinction between mergers and accretion becomes blurred, increasing importance of mergers in build-up of mass (also BH mass vs. AGN?)
- Galaxy $\phi(m)$ set by halo $\phi(m)$ not by quenching
- "Environment" effects in $m_{halo} > 10^{12}$ increasingly unimportant

Gas depletion timescale (i.e. inverse of SF efficiency ε^{-1}) becomes comparable or longer to mass increase timescales, dynamical timescales etc.

- Simple gas regulator picture likely to break down
- Loss of "Main Sequence", more episodic SF?

James Webb Space Telescope

NIRCam

- 0.6-5 μm imaging 2.4x4.4 arcmin² (shortward and longward of 2.3μm, Nyquist sampled at 2 and 4 μm
- broad, intermediate and narrow band filters
- high resolution slitless at $\lambda > 2.5 \mu m$

NIRSpec

Pickoff Mirror

- Multi-object slit spectroscopy
 3x3 arcmin²
- 3x3 arcsec² integral field
- various fixed slits

MIRI Imager (incl. Coronagraph &

LRS)

Sub-assemblies are tested as units prior to integration:

SPO, SMO, Deck, Hexapod, IOC, MIRIM, harness, FPM/FPE

Panels (ICP x 3)

Input Optics

& Calibration (IOC)

The global high-z multi-wavelength observatory "system"

Wide field multi-band opt-NIR imaging

- Subaru
- CFHT
- UKIRT
- ESO/VISTA

••••

Targets for single object follow-up

- mm IFS with ALMA/ IRAM pdB

Space-based opt+NIR high resolution imaging

Hubble Space Telescope

The deep survey fields

- HDF/UDF
- ECDFS/GOODS
- EGS, SSA22
- COSMOS

Images at other wavelengths

- XMM + Chandra (X-ray)
- Galex (UV)
- Spitzer (mid-IR)
- Herschel (far-IR)
- JCMT & APEX (mm)
- Jansky VLA (cm)

Deep spectroscopic surveys for redshifts, structure (groups) and astrophysical information

- ESO/VLT
- Keck, Magellan

Observational Goals for Assembly of Galaxies

- (-) Redshifts
- (A) Build up of structural components, i.e. Spatially resolved stellar populations and galactic structure, star-formation efficiencies, and metallicity as diagnostic

- (B) Outflows
- (C) Merging
- (D) Inflows
- (E) AGN

- Photo-z from multi-colour photometry
- Single line(?) spectroscopy
- Multi-color kpc-scale imaging above and below 4000 A
- Kpc scale Ha and molecular gas distribution (e.g. ALMA)
- Spatially resolved em. line ratio maps
- Spatially resolved atomic (and molecular) gas kinematics (R > 1000)
- Spatially resolved absorption lines
- Atomic # content
- Kpc-scale $H\alpha$ (+CO?) gas kinematics (R > 1000) also uv/opt absorption-lines
- Multi-color kpc-scale imaging above and below 4000 A
- Low resolution em. line and molecular gas kinematics
- Mostly Lyman α emission and absorption (e.g. MUSE/VLT)
- Emission line ratios and diagnostics
- Deep X-ray (and radio) catalogues

Obvious extragalactic survey programs

There will certainly be Wedding Cake imaging surveys in well-known extragalactic fields

- UDF
- 0.04 deg2 GOODS-S
- 0.2 deg² total CANDELS
- 2 deg² COSMOS? (will require a *lot* of time, of order 1000 NIRCam pointings)

With more limited areas for deep spectroscopic follow-up

Note: GTO programs (currently being defined) will only be a start (probably focusing on deeper observations of small areas rather than large "public surveys")

A few general thoughts

Similarities:

We will be doing everything we have been doing with HST in imaging and slitless spectroscopy at much higher redshift with JWST

Factor of 2.5 in mirror diameter \rightarrow same resolution at 2.5x longer wavelength (i.e. rest-V is 1.6µm @ z = 2 and 4µm @ z = 6.5)

→ effective gain in sensitivity 1.6 mag (incl. lower zodi) c.f.
 △DM = 2.2 (z = 2.5 to z = 6)

courtesy Alan Dressler

A few general thoughts

Differences

JWST <u>spectroscopy</u> will be much more important than HST spectroscopy has been (outside of the ultraviolet).

Ground-based deep spectroscopy from the ground (so far λ < 2.5 μ m) is possible with 8-m but is very painful

NIRSpec will provide

- "large-scale" surveys of emission line redshifts and line diagnostics/metals with a high completeness out to 5 μm
- detailed "SINFONI-like" kinematic and diagnostic/metal maps out to 5 μm with NIRSpec and longer with MIRI

Challenges

The (only?) observational challenge

JWST will have a much wider effective spectral range than HST. Interpretation of 2-d information from photometry and spectroscopy will require careful treatment of variable psf

The main challenge

How to synthesize the new information to give convincing astrophysical answers to long-standing questions?

Summary

- JWST will form an enabling component of the global system of facilities for studying galaxies at high redshift (2 < z < 7)
- Longer wavelength imaging with same (kpc) resolution as HST and with commensurate gains in sensitivity enables z \sim 2 studies out to z \sim 6
- We still have more questions than answers in this field. JWST will produce a mass of new "information": Much improved
 - galaxy internal structures (mass, SFR history etc across galaxies)
 - kinematic maps
 - metallicities and other astrophysical diagnostics Challenge will be to synthesize this into astrophysical understanding