

Spettrofotometria: calibrazione assoluta

INAF - Osservatorio Astronomico Bologna

SPSS - DU13	FTE			
E. Pancino (manager)	0.5			
G. Altavilla	1.0	TD		
M. Bellazzini	0.2			
A. Bragaglia	0.1			
G. Cocozza	1.0	AR		
L. Federici	0.1			
S. Galleti	1.0	AR		
S. Marinoni (ASDC+OARM)	0.2	AR		
S. Ragaini	0.5	AR		
TOTALE	4.6			

Model - DU14	FTE	
C. Cacciari (manager)	0.5	
M. Bellazzini	0.1	
P. Montegriffo	0.9	
S. Ragaini	0.5	AR
TOTALE	2.0	

The instruments

Focal Plane

Gaia spectro-photometric system

- same principle as classical spectrophotometry calibration
- much more complex instrument model: characterize 62 CCD (AF) + 7 (BP) +7(RP)
 - → mean *internal* instrument → mean *external* instrument

Gaia spectro-photometric calibration

Internal calibration: corrects <u>relative</u> instrument response variations wrt mean instrument → fluxes and SEDs in internal flux and pseudo-wavelength scales

External calibration: ties mean instrument response to absolute flux and wavelenght scales

Internal & external calibration goals

- Internal calibration means removing following effects using to model:
 - -- geometry (e.g. CCD misalignment)
 - -- CCD response variations (QE, flat-fielding, etc.)
 - -- dispersion curve variations (spectra only)
 - -- PSF/LSF variations (spectra only)
 - -- effects of gates
 - -- across-scan (AC) flux loss
 - -- other effects (varying full well capacity, background nonuniformity, contamination, CTI, etc.)
 - -- all of the above as a function of FoV and AC coordinate

External calibration removes remaining effects using to model:

- dispersion & LSF & wavelength absolute calibration (spectra)
- mean instrument response in absolute flux scale (photometry & spectra)

~ 200 flux-calibrated spectro-photometric standard stars (SPSS)

External calibration model – integrated photometry

Goal: derive true filter response $R(\lambda)$ using SPSS data

For each one of the ~ 200 SPSS

$$f_{obs} = \int_0^\infty R(\lambda) \cdot S(\lambda) \, d\lambda$$

- **f**_{obs}: internally calibrated integrated flux in any of G/BP/RP bandpass
- **S**(λ): tabular flux data points (**SED**) at some λ -sampling
- R(λ): G/BP/RP bandpass (i.e. instrument response, same λ-sampling as SED),
 i.e. convolution of: telescope & camera optics, mirror reflectivity & attenuation,
 CCD characteristics (QE, FWC, etc.), filter coating, prism transmissivity, etc.

undersampling **→** decrease dimensions

→ parametrize $R(\lambda)$ shape as linear combination of *n* optimal basis functions derived via PCA method

$$R(\lambda) = \sum_{i=0}^{n} b_i B_i(\lambda) \qquad n \sim 4-5$$

External calibration model – integrated photometry

- re-define photometric system on SPSS
- no color equation, calibrate only flux zero-point

Calibration model $\mathbf{R}(\lambda)$ applied to a large sample of test stars with Montecarlo simulations

reliable and robust calibration model final expected accuracy \leq 1-2%

External calibration model definition - BP/RP spectra

Goal: derive true SED shape & absolute flux $S(\lambda)$ using SPSS data

External calibration model implementation - BP/RP spectra

$$f_{obs}(u) = \int_0^\infty R(\lambda) \cdot L_\lambda(u - u_0(\lambda)) \cdot S(\lambda) \ d\lambda$$

- $R(\lambda)$: modelled by linear combination of basis functions – same as for integrated photometry
- $L(\lambda)$: modelled by linear combination of specific. basis functions
- $u_0(\lambda)$: modelled by a polynomial function

solve for all SPSS \rightarrow calibration model

 $L_{\lambda}(u) = H_{0,\lambda}(u) + \sum_{n=1}^{I} h_n(\lambda) \cdot H_{n,\lambda}(u)$ $h_n(\lambda) = \sum_{i=0}^{I} q_{ni} \left(\frac{\lambda - \lambda_0}{\lambda_0}\right)^i$

External calibration model implementation - BP/RP spectra

$$f_{obs}(u) = \int_0^\infty R(\lambda) \cdot L_\lambda(u - u_0(\lambda)) \cdot S(\lambda) \ d\lambda$$

 $L_{\lambda}(u) = H_{0,\lambda}(u) + \sum_{n=1}^{I} h_n(\lambda) \cdot H_{n,\lambda}(u)$ $h_n(\lambda) = \sum_{i=0}^{I} q_{ni} \left(\frac{\lambda - \lambda_0}{\lambda_0}\right)^i$

 $R(\lambda)$: modelled by linear combination of basis functions – same as for integrated photometry

 $u_0(\lambda)$: modelled by a polynomial function

solve for all SPSS → calibration model ◆

 $S(\lambda) = \begin{cases} (f_{\lambda_0}, f_{\lambda_1}, ..., f_{\lambda_n}) & External \ calibrators \\ \\ \sum_{\delta=0}^{N_{\delta}} b_{\delta} \ B_{\delta}(\lambda) & all \ other \ sources \end{cases}$

apply calibration model → calibrated SEDs ■

Final expected accuracy ~ 1-3% Work in progress

Spectro-Photometric Standard Stars (SPSS)

Goal: provide the grid of SPSS (homogeneous flux scale, 1-3% accuracy)

SPSS candidates

- three pillars from CALSPEC, V ~ 11.5 to 13.5, calibrated on Vega
- > ~ 50 primary standards, ~ $9 \le V \le$ ~ 14 across the sky
- ➤ ~ 200 secondary standards, ~ 9 ≤ V ≤ ~ 15 across the sky
- > all spectral types, from bluest (e.g. WDs) to reddest (late types, reddened)
- initial sample of ~ 350 SPSS candidates
- ➢ possible addition ~ 200 bright (6.0 ≤ V ≤ 10.5) stars from NGSL for calibration of gated observations

Observing campaign (in **GBOG)** started in 2007 at various sites:

TNG (La Palma, Canary Islands): spectroscopy, photometry
NTT (ESO, LaSilla) - spectroscopy, photometry
CAHA (Calar Alto, Spain): spectroscopy, photometry
1.5m (San Pedro Martir, Mexico): spectroscopy, photometry
REM ((ESO, LaSilla): variability monitoring
CASSINI (Loiano, Italy): spectroscopy, variability monitoring

Interesting science being produced from variability monitoring

SPSS: status of observations and data processing

More than **400 nights already observed + 60** to complete survey ≤ 2014 SPSS sample: initial 350 stars, current 250 stars

GES awarded 240 + 60 nights, ~ 300 Co-ls !

- spectroscopy ~ 94% done, ~ 50% reduced, to be completed by end 2013
- ➢ photometry ~ 70% done, ≤ 40% reduced, expected completion by 2014
- variability monitoring ~ 90% done, expected completion by June 2014

Observations

ogenzia spaziale

ASDC-SPSS archive & database

ASI Science Data Center

- Raw data: calibration, science, tests for instruments characterization ~ 10⁵ frames in 410 nights
- Reduced data: various intermediate data reduction levels
- Data products: photometric catalogues and long term light curves, absolute photometry, night quality parameters, synthetic magnitudes, flux tables (stored also in Main DataBase)
- Auxiliary data: filters and grisms characterization, reference data

Foreseen Releases

- DPAC only: dynamic, DU13 people working space
- Public: static, one for each Gaia Data Release

	G_TEL ⊄ ₽	G_INST ⊄ ₽	G_RUNTYP ⊄ ₽ ▲	G_RUNID ✓ I	G_NIGHT ⊄ ₽	G_SKY ✓	G_ID ✓ I	FILE_THUMB	G_TYPE ⊄ ₽	G_RAhms ⊄ ₽	G_DECdms ⊄ ₽ ▲	G_DATE ⊄ ₽	G_UT ⊄ ₽	G_HJD 🗹 🔊 🔺	G_EXPT ⊄ ₽	G_EFFAM ✓ ₽	G_SEEINO ✓ ☞ ▲
File Download	CAHA2.2	CAFOS	м	001	2007-10-31	Clear	1		Pillar	05:06:10.31	+52:48:31.46	2007-10-31	22:04:25	2454405.42345234	10	1.511271	1.54
File Download	CAHA2.2	CAFOS	м	001	2007-10-31	Clear	1		Pillar	05:06:06.69	+52:48:42.52	2007-10-31	22:18:33	2454405.43668268	600	1.432132	1.54
File Download	CAHA2.2	CAFOS	м	001	2007-10-31	Clear	1		WaveLamp	05:08:47.64	+52:47:58.49	2007-10-31	22:33:58	2454405.44390024	1.5	1.403048	
File Download	CAHA2.2	CAFOS	м	001	2007-10-31	Clear	1		Pillar	05:06:10.04	+52:48:37.76	2007-10-31	23:03:27	2454405.46786456	600	1.28563	1.54
File Download	CAHA2.2	CAFOS	м	001	2007-10-31	Clear	1		WaveLamp	05:06:10.19	+52:48:36.90	2007-10-31	23:17:20	2454405.47405121	3	1.261966	
File Download	CAHA2.2	CAFOS	м	001	2007-10-31	Clear	1		Pillar	05:06:08.32	+52:48:31.46	2007-11-01	02:22:06	2454405.60582424	600	1.038576	1.4

Web interface for data access and retrieval

Thank you!

Payload and Telescope

Sky Scanning Principle

Transit maps

Ecliptic coordinates

Galactic coordinates

End of mission (5+1 yr) average (max) number of transits: about 80 (240)