

La Scala delle Distanze

G. Clementini INAF - Osservatorio Astronomico, Bologna

Acknowledgements: C. Cacciari, M. Marconi, V. Ripepi

The Hubble Law

" In standard big bang cosmology the universe expands uniformly; and locally, according to the Hubble law,

 $v = Ho \times d$

where v is the recession velocity of a galaxy at a distance d, and Ho is the Hubble constant, the expansion rate at the current epoch."

Freedman et al. 2001, Ap.J. 533, 47

"The uncertainty on the distance is the major contribution to the error budget on *Ho*"

The GREAT ITN

WP6: Grand Challenges – Distance Scale & Transient Sky

Gaia's primary mission is obtaining distances to objects in the local Universe. At the same time, due to its frequent repeated observations of the sky, where each object will be observed on average nearly one hundred times, Gaia will also have a significant impact revealing the transient sky.

Task 6A: The Distance scale

The Gaia satellite will have a dramatic impact on the definition of the cosmic distance scale (DS), providing the direct measure via parallaxes of the local primary distance indicators and, in turn, a direct re-calibration of the secondary distance indicators. This will significantly improve our knowledge of the Hubble constant. At the same time Gaia will offer a unique opportunity to assess the systematics affecting the various indicators contributing to the cosmic DS as well as to establish new standard candles.

Distance to the Large Magellanic Cloud (LMC)

The LMC is the First Step of the cosmological distance ladder

The distance modulus of the Large Magellanic Cloud as derived from different techniques (Benedict et al. 2002)

Distance to the Large Magellanic Cloud (LMC)

The LMC is the first step of the cosmological distance ladder

Scala Rotta – Paolo Quaresima – Olio su tela

The distance modulus of the Large Magellanic Cloud as derived from different techniques (Benedict et al. 2002)

Distance Ladder

"Given the range spanned by the astronomical distances, the astronomical distance ladder is made by overlapping techniques and distance indicators, starting from the most closeby that we can calibrate directly. These are the socalled **standard** candles"

Distance Ladder

Gaia will provide trigonometric parallaxes, hence geometric distances to unprecedented accuracy of most powerful "primary" distance indicators, thus allowing a reassessment of the entire cosmic distance ladder.

Requirements for a standard candle

Aaronson & Mould (1986) requirements:

- numerous and easily recognizable objects
- objective measurables (e.g. stellar magnitudes)

Iuminosity based on well known physics

- □ high intrinsic luminosity
- small luminosity range
- minimal corrections

Standard candles that Gaia will impact significantly

- metal poor subdwarfs
- □ RR Lyrae stars
- □ Long Period Variables (LPVs)
- Cepheids

□ Type Ia SNe (alerts: ~6000 new SNe, ~ 85% type Ia)

Gaia performance: astrometry

Sky average end-of-mission performance (mean of 70 parallax measures) Error on pm is about 0.54 error on parallax

Gaia performance: integrated photometry

Sky average single transit 1 Photometric standard error per FoV transit [mag] G: 330-1050 nm – G BP for V-I = 0 mag0.1 BP: 330-680 nm RP for V-I = 0 mag (3-27 nm/px)0.01 RP: 640-1050 nm (7-15 nm/px)0.001 0.0001 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 G [mag] σBP σRP Internal eom σG External accuracy depends on: → number & spectral type of SPSS B1V-G2V-M6V at (mmag) (CalSpec, Gaia grid) → accuracy of SPSS SEDs ≤1 4-5-9 V ≤ 16 5-5-4 specific spectral range for BP/RP → V = 192 13-18-120 34-18-8 spectra V = 203 29-43-301 83-43-17

Expected absolute accuracy: ~ 1% to a few %

Local standard candles

Metal-poor field subdwarfs Mv= +5.0 to +7.5 mag

Presently, ~ 30 subdwarfs available (Hipparcos) within 100 pc

Gaia: within 1 kpc distance to $\sigma\pi/\pi < 2-6$ % a factor 10 (1000) in distance (volume) \rightarrow several thousands expected

Pulsating variables with Gaia

	Hipparcos	Gaia	
Classical Galactic Cepheids	273 observed (2 new) P: 2 to 36 days ~ 100 with $\sigma_{\pi} < 1$ mas	Census of galactic Cepheids with $G \leq 20$: ~ 9000 Cepheids All periods, colours and metallicities Up to 1-2 kpc with $\sigma_{\pi}/\pi < 1\%$ All galactic Cepheids with $\sigma_{\pi}/\pi < 10\%$ Cluster membership	
Population II Cepheids	~ 30	~ 2000	
LMC Cepheids	None	1000-2000 Cepheids with $\sigma_{\pi}/\pi \sim 50 - 100 \%$ Mean distance of groups of Cepheids expected to 10 % Mean distance of LMC expected to 0.5 % Depth of LMC expected to 1 %	
RR Lyrae	186 observed (9 new) Only RR Lyr with accurate π 126 with $\sigma_{\pi}/\pi \sim 30 \%$	All galactic RR Lyrae: ~ 70 000 +15000-40000 in the Bulge All metallicities Up to 1 kpc with $\sigma_{\pi}/\pi < 1\%$ In globular clusters: mean $\sigma_{\pi}/\pi < 1\%$	
All pulsating variables		Extensive surveys of all types of variables Astrometry, photometry and spectroscopy Extensive sampling versus period, colour, metallicity Determination of the zero-points and slopes the P-L(-C) relations Determination of the intrinsic dispersion of the P-L(-C) relations Cluster membership	

adapted from Turon & Luri review at the Distance Scale ESF Conference, Naples, May 2011

Cepheids and RR Lyrae stars

- Easily recognizable thanks to the light variations
- Periods and amplitudes unaffected by distance and reddening, and related to Mass, Luminosity, Teff (Y,Z)
 ⇒ constraints on intrinsic stellar parameters
- Trace populations with different age and chemical composition:

t <100 Myr - Classical Cepheids t~1-5 Gyr - Anomalous Cepheids t >10 Gyr (RR Lyrae, Type II Cepheids)

• Most important standard candle in the Local Group (RR Lyrae stars, M_V -[Fe/H], PL_KZ) and beyond, up to 20 Mpc (Cepheids, PL, PLC, Weseneiht) \Rightarrow calibration of secondary indicators \Rightarrow measure of H₀

Cepheids and RR Lyrae stars : open issues

Cepheids: PL,PLC, Wesenheit relations (optical/NIR)

- Coeficients of the relations
- Dependence of the Cepheid's properties and PL on the chemical composition
- Linearity of the PL relation
- Binarity/reddening/pulsation mode
- Discrepancy pulsational/ evolutionary mass

RR Lyrae stars: M_V=a[Fe/H]+b M_K=alogP+β[Fe/H]+γ

- Slope, zero point, linearity of the M_V-[Fe/H] relation
- Dependence on off-ZAHB evolution, detailed chemical composition (Y, a-elements)
- Zero point and coefficients of the $M_{K}(logP,Z)$ relation

 \Rightarrow error on distances > 10%

 \Rightarrow error on H₀ > 4-5 % ???

for both types of variables moving to the infrared is an advantage

MW field RR Lyrae stars

RR Lyrae Mv= 0.5-0.6 mag

Presently, 126 RR Lyraes with < V > = 10 to 12.5 (750 - 2500 pc) $\sigma_{\pi}/\pi \ge 30$ % (Hipparcos) (Fernley et al. 1998)


```
Mv = 0.52 for all (~ [Fe/H]=-1.5 dex)
```

```
\langle V \rangle = (V_{max} + V_{min})/2
```

Zero reddening

→ Individual end-of-mission σ_{π}/π estimates $\sim 5\%$ (~ 340 RRL) to $\leq 1\% \leq 1.5$ kpc ~ 15% (~ 1000 RRL) to $\leq 5\% \leq 4$ kpc ~ 26% (~ 1750 RRL) to $\leq 10\% \leq 5.7$ kpc ~ 43% (~ 2900 RRL) to $\leq 20\% \leq 8$ kpc ~ 60% (~ 4000 RRL) to $\leq 30\% \leq 10$ kpc

Globular cluster RR Lyrae stars

Piotto et al. (2002)

V(HB), reddening & distance from Harris' Catalogue 2011 update

V(RGB) = V(HB) - 0.5 mag

Cluster σ_{π}/π from end-of-mission mean of 1000 RGB star measures

Reference distance from lowest reddening cluster

MW Globular Cluster online Catalogue Harris (1996) 2011 update

MW Cepheids

Only ~ 800 Galactic Cepheids are known - most are located in the Solar neighbourhood, up to ~ 9000 are expected to be discovered by Gaia

Figure courtesy A. Brown

Most (~ 3/4) Galactic Cepheids will have Gaia individual parallaxes to < 3%

MC Cepheids

~ 3300/2100 Cepheids are known (and observable by Gaia) in the LMC/SMC

600 Cepheids in the LMC (OGLE, Udalski et al. 1999)

direct (trigonometric) calibration of the cosmological distance scale

Sinergy among Gaia and past or future surveys

of pulsating stars

Visual	Infrared	Spectroscopy	Astrometry
EROS MACHO SUPERMACHO OGLE II-III-IV MOA	ISO DENIS SIRIUS 2MASS SAGE SPITZER	Gratton et al. 2004 Borissova et al. 2004,2006 Romaniello et al. 2008	
STREGA@VST STEP@VST GAIA LSST	VVV VMC CRRP	GAIA RVS GES? WEAVE? MOONS?	GAIA

The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective Naples, May 3-6, 2011

http://www.oacn.inaf.it/ESFdistance

see also: **GREAT WGA8 Distance scale**, at: http://camd08.ast.cam.ac.uk/Greatwiki/WGA8DistanceScales

Thank you !

