

Gaia Discovery Space

- 2-3 M_J planets at 2<a<4 AU are detectable out to~200 pc around solar analogs
- 2) Saturn-mass planets with 1 < a < 4 AU are measurable around nearby (<25 pc) M dwarfs

For Gaia: $\sigma_A \sim 20 \mu as$

Sozzetti 2011

L'Italia in Gaia

INAF – OA Roma, 14 Feb 2013

Semi-major Axis (AU)

How Many Planets will Gaia find?

Star counts of F-G-K dwarfs (V<13), F_p(M_p,P), Gaia completeness limit

Δd (pc)	N_{\star}	Δa (AU)	$\frac{\Delta M_p}{(M_J)}$	N _d	N _m
0-50	~10 000	1.0 - 4.0	1.0 - 13.0	~ 1400	~ 700
50-100	~ 51000	1.0 - 4.0	1.5 - 13.0	~ 2500	~ 1750
100-150	$\sim \! 114000$	1.5 - 3.8	2.0 - 13.0	~ 2600	~ 1300
150-200	~ 295000	1.4 - 3.4	3.0 - 13.0	~ 2150	~ 1050

Casertano, Lattanzi, Sozzetti et al. 2008

INA

How Many Multiple-Planet Systems will Gaia find?

Star counts of F-G-K dwarfs (V<13), F_{p,mult}, Gaia detection limit

Case	Number of Systems
Detection	~ 1000
Orbits and masses to	
better than 15-20% accuracy	$\sim 400 - 500$
Successfull	
coplanarity tests	~ 150

Unbiased, magnitude-limited planet census of hundreds of thousands stars

- Gaia & spectroscopic characterization observatories (e.g., EChO)
- Gaia & transit surveys from the ground (e.g., WASP, APACHE) and in space (CoRoT, Kepler, CHEOPS)
- Gaia & direct imaging observatories (e.g., SPHERE, PCS)
- Gaia & RV programs (e.g., HARPS(-N), ESPRESSO, CARMENES, and the likes)
- Gaia & ground-based and space-borne astrometry

Objectives of study within the GREAT RNP/ITN

L'Italia in Gaia

Synergy with RVs

- Complete characterization of systems architectures across orders of magnitude in mass and orbital separation
- Refinement of known orbits
- Complete dynamical stability studies in multiple systems

Atmospheric Characterization

For 0.3<a<3.0 AU, uncertainties in the emergent flux will typically be 10-15%

Potential synergy with direct imaging, reflected light and atmospheric characterization measurements

INAF – OA Roma, 14 Feb 2013

INA

Hosts of Transiting Planets

- Parallaxes of virtually ALL planet-hosting stars released formally around mid-2016
- For a typical target with V~15 at d~ 20(500) pc, expect σ(π)/π<0.1(2-3)%
- Re-calibrate absolute luminosities (particularly at the bottom of the main sequence)
- Derive trigonometric gravities to ~0.03(0.05) dex
- Re-determine the stellar radii to <3(5)% accuracy
- Great synergy with ground-based and space-borne transit surveys