

Galactic stellar populations

A. Vallenari

&

A. Bragaglia, E. Pancino, G. Giuffrida, R. Sordo

S. Marinoni, Bellazzini, A. Spagna, S. Randich

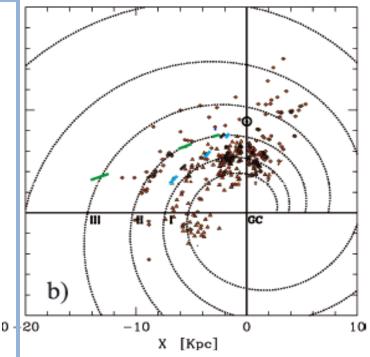
INAF, Padova, Bologna, Roma, Torino, Firenze

- Gaia Open and Globular cluster
- Clusters in the early releases
- Clusters as tracers of the Galactic populations
- Getting ready for Gaia

Clusters as population tracers

Open Clusters age, metallicity, position

- trace the spiral arms(Naoz & Shaviv 2007)


INAF

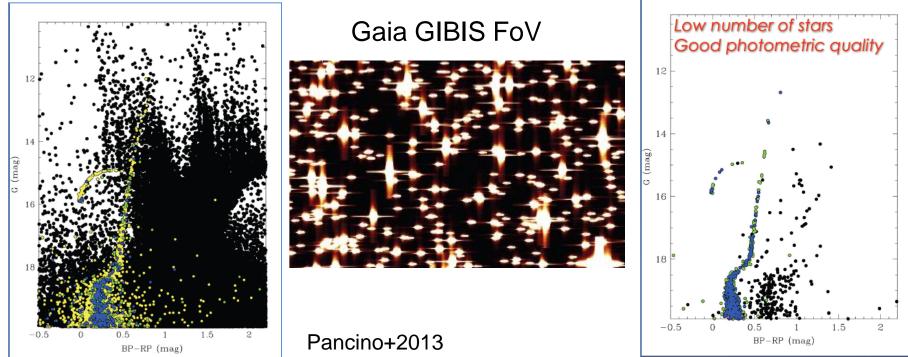
- trace the disk <u>chemical gradient</u> disk
 - \rightarrow disk formation process (Magrini+2009,

Chiappini+2001)

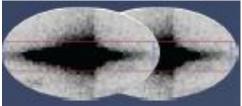
Their internal kinematics/ dynamical evolution -> birth, evaporation, disruption, trace the <u>Galactic environment</u>: Tidal field, GMC

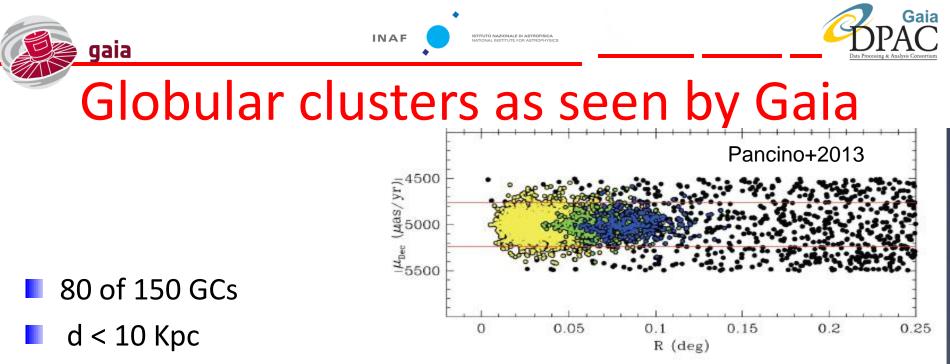
Less affected by radial migration ? (Wu+2007, vandePutte+ 2011)

Globular clusters are old objects
 They trace the thick disk, halo, bulge : tidal field, formation process
 Their multiple populations
 → cluster formation process (Carretta+ 2010)



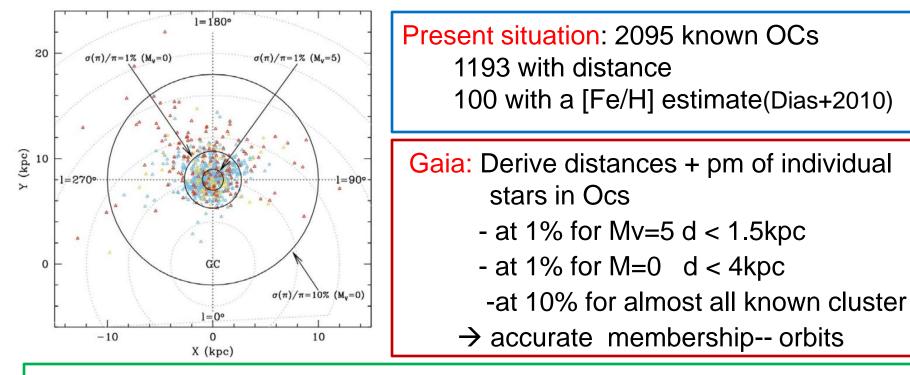
Gaia DEPAC


Globular clusters as seen by Gaia

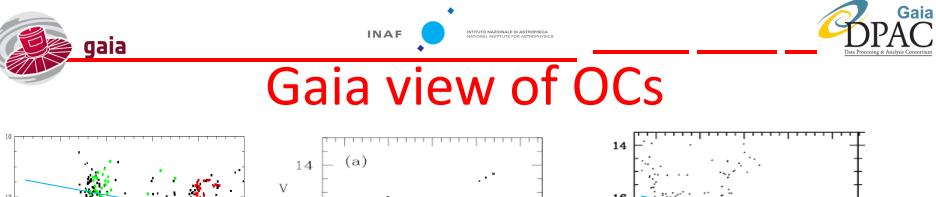

d=10 Kpc, c=2.5, bulge

p.m selection

Non rotating 3D cluster (Kupper + 2011) +field stars Generating Gaia images crowding (partial superposition)


- Proper motions orbits maybe tidal tails \rightarrow halo potential
- Membership determination of 100/10000 stars(outside the half light radius, 3-5 µarcsec/yr at 10 Kpc)
- More than 5000 stars for half of the clusters
- Mean distances to < 1 % for about 80 clusters</p>
- Mean distances to < 5 % for all clusters</p>
- Spectra of stars above G=17 for Rv
 - Missing detailed chemical abundances for G>11-12

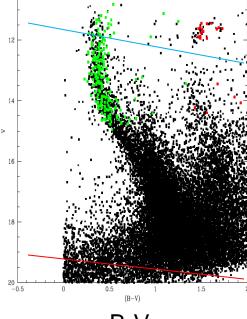
ITUTO NAZIONALE DI ASTROFISICA TIONAL INSTITUTE FOR ASTROPHYSI


Gaia view of OCs

Small velocity dispersion in OCs (1 - 2 km/sec) → studies of the internal dynamics require ~ 0.2 km/sec

Gaia: accuracy better than 1% for transverse velocity
 G0 stars brighter than V~13 (d<500pc), K1 III (red clump in old OCs) V<14 :d < 5 kpc.

Missing: Detailed chemical abundances for G>11-12



16

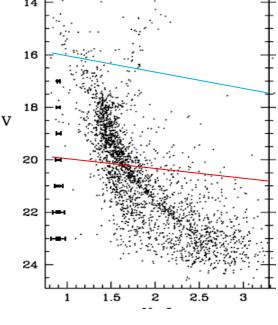
18

20

22

B-V

NGC 6705


(Vallenari+2013) D=1800 pc, Age=250 Myr **Be 17** (Vallenari+1999, Bragaglia+ 2006) D=2600 pc, Age=10 Gyr

V-I

1.5

2

0.5

B-V

Be 29 (Tosi, Bragaglia 2006) D=13.05 Kpc, Age=3.7 Gyr

Early releases

Launch +22 months:

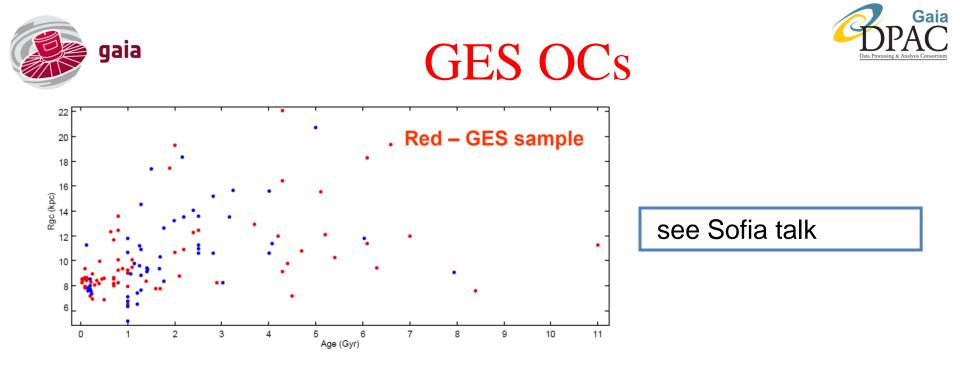
- Hundred Thousand Proper Motion catalog
- Proper motion accuracy of at least 48-65-µas/yr
- Radial velocities for 35495 Hipparcos stars (Gontcharov 2006)
- EPC data: for early testing

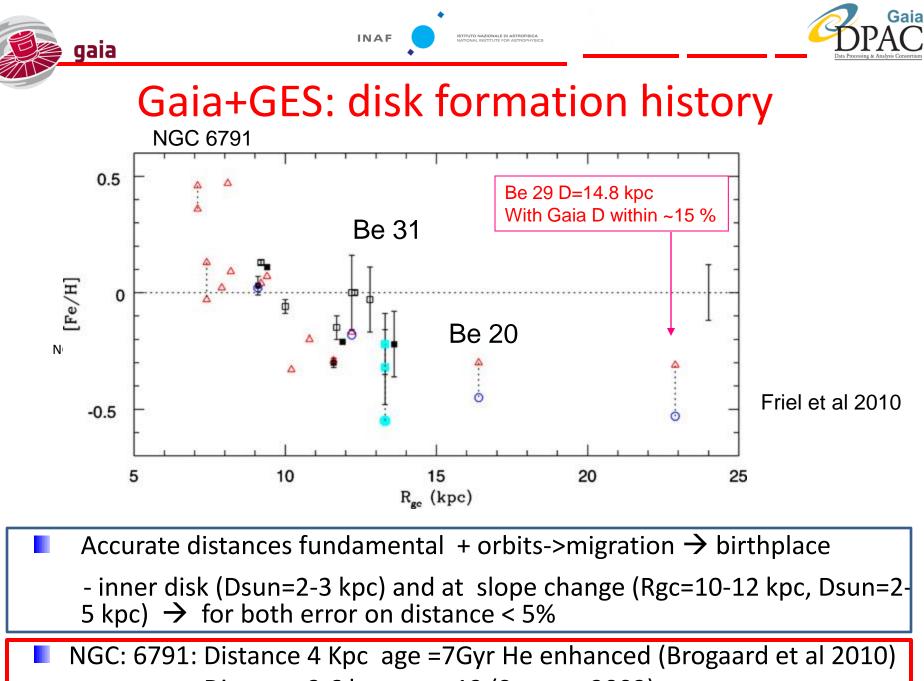
Launch +28 months:

- early classification based on BP/RP integrated photometry
- five parameters astrometry
- mean Radial velocity

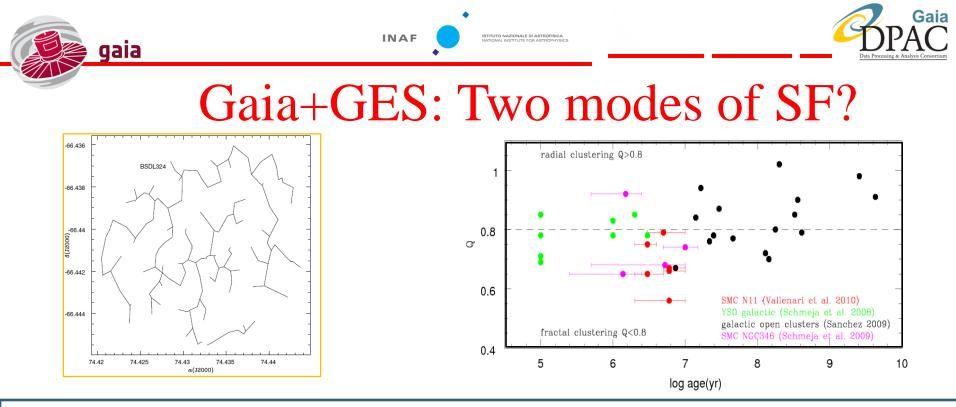
Clusters in early releases

Hundred Thousand Proper Motion catalog:


- All OCs closer than 300 pc + the richest OCs up to 500 pc (19 objects)
- 150 stars in Hyades to 40-10 stars in distant OCs (V=12)
- 500 nearby field subdwarf stars used as Population II calibrators for globulars (Carretta + 2010) → old GCs distance and age revision
- Larger sample of Ocs and GCs down to V=20 in the second+ releases

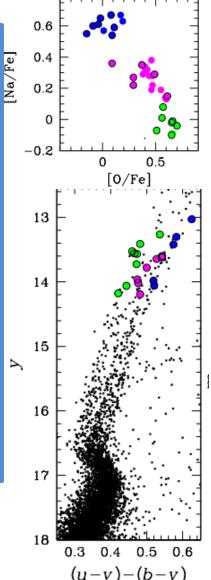


Preparing for Gaia


- BOCCE project on Ocs: photometry, spectroscopy for 50 Ocs: metallicity, extinction (Tosi & Bragaglia 2006, ..Ahumada+ 2013)
- Photometry, age determination for a large sample of Ocs (Bragaglia, Tosi, Vallenari+ 2013)
- OCs from the North: 25 Ocs > 0.5 Gyr, : red giants FIES@NOT 2.5 m (Carrera, Pancino+ 2013)→ Galactic anticenter OCs
- GCs spectroscopy (1200 RG in 19 GCs, Carretta, Bragaglia+2010)
- GES (OCs and a few GCs)
- Future surveys: WEAVE

- Young: 1-100 Myr → evolution of OCs from birth to dissolution: IMF, stellar evolution : stars down to M dwarfs requirement: vrad< 0.3 m/s for a M star, Gaia 1% precision → dc=1.5 kpc: 30 OCs
- Intermediate age : 100-500 Myr req. 1) \rightarrow dc=700 pc : 15 Ocs
- Old age : > 500 Myr ; large dist → stellar evolution; galactic evolution : red clump stars : 50 Ocs

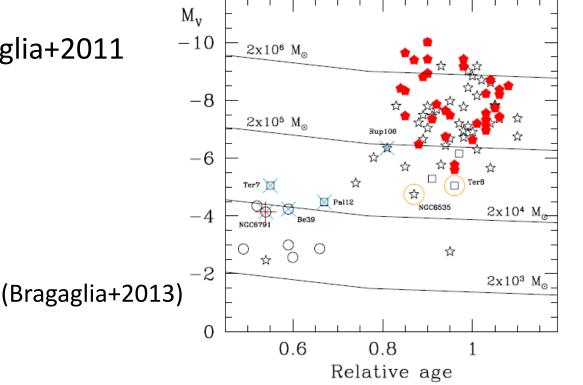
Distance 3.6 kpc age =12 (Stetson 2003)


- All stars form in clusters \rightarrow dispersed in the field (e.g. Lada & Lada, 2003)
- In Orion nebula, 20% of stars are distributed \rightarrow formed in isolation? (Allen et al 2007)
- Hierarchical formation (Klessen + 2008, Carthwright + 2004)
- High environmental density \rightarrow bound OCs
- Low density environment → unbound structures/ dispersed SF (Gieles& Portegies Zwart 2011, Bressert et al 2010).
- \rightarrow Role of the environment in OC formation

Halo formation from GCs

- The halo-GC connection is unclear
- GCs are 1% of the mass of the halo
- Multiple population in GCs are expected
 - if the GCs were much more massive
 - than today (Piotto+2007, Carretta+2010)
 - \rightarrow star evaporation due to tidal field, disk shocking
- GAIA+ GES, Pan-Starrs, HERMES, APOGEE
 - \rightarrow tagging GC stars in the halo
- Halo assembly :accretion (Cooper 2010) vs in situ (gas rich mergers) (Zolotov 2009, Font 2011)

NGC 6752, Milone + 2013



qaia

Gaia+GES: multiple populations

- OCs as link between GCs and field stars
- Which is the mass limit for multiple populations?
 Mv -10
 2x10⁶ Mo

Using OCs for Catalog Validation

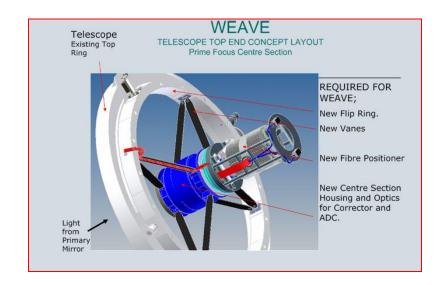
- Ocs are single stellar population: same age and metallicity
- Ideal tests of Gaia astrometry, stellar parameters

aaia

- Cross match with external Catalogs+comparison with stellar models
- Pleiades MS problem and 10% distance discrepancy: sistematics over 1 deg in Hipparcos data? (Narayanan & Gould 1999)
- A clear challenge due to multi-dimensional Gaia Catalog, different accuracy of ground-based Catalogs

Table 1. I leades paranaxes (updated from Soderbiom et al. 2000)				
Method	$\pi_{\rm abs}$ (mas)	D (pc)	m–M	Ref.
Hipparcos all-sky Hipparcos new reduction		118.3 ± 3.5 122.2 ± 1.9		$\frac{2}{7}$
Main-sequence fitting Allegheny Observatory parallaxes Interferometric orbit Dynamical parallax <i>HST</i> FGS parallax of 3 Pleiads	7.64 ± 0.43 7.41 ± 0.11 7.58 ± 0.11	131.9 ± 2.4 130.9 ± 7.4 135.0 ± 2.0 131.9 ± 3.0 134.6 ± 3.1	5.59 ± 0.11 5.65 ± 0.03 5.60 ± 0.05	$ \begin{array}{c} 1 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $

Table 1. Pleiades parallaxes (updated from Soderblom et al. 2005)

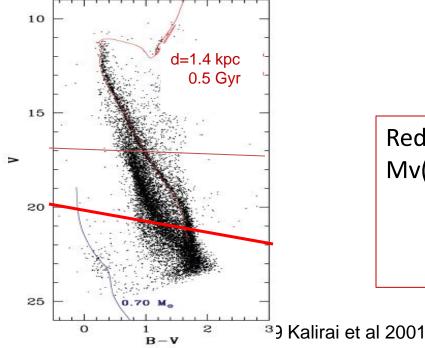


WEAVE Survey

TITUTO NAZIONALE DI ASTROFISIC

- WHT (Spain, UK, France, Netherlands)
- PI. G. Dalton
- Part of the Science Team
- 2017 + 5 years, D=2deg field, 1000 fibers
- 1) R=20000, Vlim = 17 mag \rightarrow chemical labelling
- 2) R=5000 Vlim = 20 mag \rightarrow radial velocity
- HR spectral range: [450-680]nm
- Goal: complement Gaia
 - field (10⁶ stars) \rightarrow external disk
 - -halo formation: streams (vrad<5 km/s)
 - -thin/thick disk : kinematics and metallicity -60 Ocs
 - Expected accuracy for OCs: vrad < 1 km/s
 - Chemical labelling : 0.1-0.2 dex

WEAVE- WHT OC Survey


INAF

- About 300 OCs visible from N
- [Fe/H] available only for a few (< 40)
- Gaia distances < 2% for 240 OCs
- Young (age < 500 Myr): 130 OCs diameter>20': 100 Ocs

Goals:

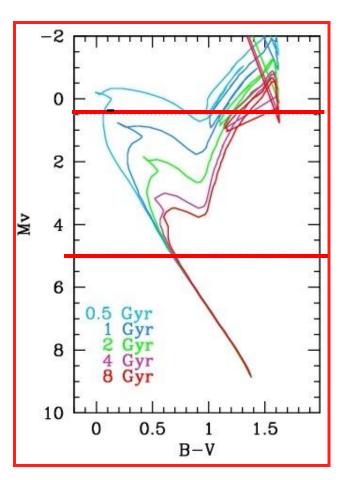
-Tracing the external disk

- -OCs associated to streams
- -OC –field star relation
- -Key cases .Be 17- NGC 6791

Red clump stars as tracers: age > 0.5 Gyr $Mv(RC)=0.5 \rightarrow V=12$ at dist=2 Kpc : 60 OCs $\rightarrow V=13.5$ at dist=4 Kpc : 10 OCs $\rightarrow V=15.0$ at dist=8 Kpc : a few

Conclusions

- Clusters are tracers of the Galactic populations
- Several observational projects have been started or are forseen in the coming years to complement Gaia
- Italian Community is preparing for Gaia scientific exploitation


٠

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Gaia accuracy

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSIC

	dist (kpc)	V	σ π/ π
Mv=+0.5	1	10.5	<0.01
	2	12.1	0.02
	5	14.0	0.05
	10	15.5	0.13
Mv=+5.5	1	15.5	0.01
	2	17	0.14
	4	19	0.55

Data release scenario: II

Fourth release:	Updates of all above +
launch + 65 Months	 Variable star classifications and parameters as available, and the epoch photometry
Wohars	 Solar system results with preliminary orbital solutions and individual epoch observations
Mar-2019	Non-single star catalogue
Final release:	Full astrometric, photometric, radial velocity catalogue
End Mission + 3	 All available variables and non-single stars solutions
years (36 months)	 Source classifications (probabilities) plus multiple astrophysical parameters derived from BP/RP, RVS and astrometry for stars, unresolved binaries, galaxies and quasars.
Mar-2019/2020	Precision improved with respect to 4th release. Some parameters may not be available for fainter stars.
	 Non Single Stars solutions and exoplanet list
	 All epoch and transit data for all sources
Mar-2022/2023	All Ground Based Observations made for data processing purposes (or links to it)