

The extragalactic γ -ray sky as observed by *Fermi*. What have we learned? New discoveries and open questions

Filippo D'Ammando (DIFA and INAF-IRA Bologna)

Monica Orienti (INAF-IRA Bologna) and Marcello Giroletti (INAF-IRA Bologna)

+ many others...

dammando@ira.inaf.it

The Fermi Gamma-ray Space Telescope

Large Area Telescope (LAT) 20% of the sky at any instant from 20 MeV to >300 GeV *Fermi-LAT Collaboration:* ~400 Scientific Members

Gamma-ray Burst Monitor (GBM) entire unocculted sky transients from 8 keV to 40 MeV

Launched from Cape Canaveral Air Station on 2008 June 11 nearly circular orbit at 565 km, 25.6°. Orbital period of ~95 minutes.

dammando@ira.inaf.it

The Third LAT AGN Catalogue (3LAC)

Ackermann et al. 2015, apJ, 810, 14

48 months of LAT data

• 1591 (1444) sources with TS>25, |b|>10° (71% • 40 more than in 2LAC)

- 182 low-latitude AGN (24 FSRQ, 30 BL
- Lacs, 125 BCU, 3 non-blazar AGN)

- 467 FSRQ
 - 632 BL Lacs
 - 460 BCU (~50% new 3LAC sources)
 - · 32 non-blazar AGN

Not only classical blazars in the 3LAC

Name	3FGL	2FGL	1FGL	Type	Photon index	Notes
NGC 1218	J0308.6+0408*		J0308.3+0403*	FRI	2.07 ± 0.11	
IC 310	J0316.6+4119*	J0316.6 + 4119	10.	FRI/BLL	1.90 ± 0.14	Neronov et al. (2010)
NGC 1275	J0319.8+4130*	J0319.8+4130*	J0319.7+4130*	FRI	2.07 ± 0.01	Abdo et al. (2009c); Kataoka et al. (2010)
H 0323+342	J0325.2+3410*	J0324.8+3408*	J0325.0+3403*	NLSy1	2.44 ± 0.12	
1C + 39.12	J0334.2+3915*			FRI/BLL?	2.11 ± 0.17	Giovannini et al. (2001)
XS 0348+013	J0351.1+0128*	2.0.12	1000	SSRQ	2.43 ± 0.18	
C 111	J0418.5 + 3813		J0419.0 + 3811	FRI	2.79 ± 0.08	Abdo et al. (2010e); Kataoka et al. (2011); Grandi et al. (2012)
lictor A	J0519.2-4542*			FRII	$2.49 {\pm} 0.18$	Brown & Adams (2012); Kataoka et al. (2011)
KS 0625-35	J0627.0-3529*	J0627.1-3528*	J0627.3-3530*	FRI/BLL	1.87 ± 0.06	
C +52.17	J0733.5 + 5153	1.4.4.4		AGN	1.74 ± 0.16	Part of a duplicate association. Most probable counterpart is a BCU III.
GC 2484	J0758.7+3747*		0.07	FRI	2.16 ± 0.16	quasar SDSS J075825.87+374628.7 is 0.8' away
C +39.23B	J0824.9 + 3916			CSS	2.44 ± 0.10	
C 207	J0840.8+1315*	J0840.7+1310	J0840.8+1310	SSRQ	2.47 ± 0.09	
BS 0846+513	J0849.9+5108*			NLSy1	2.28 ± 0.04	0 (12) FR I / 3 FR II
C 221	J0934.1+3933			SSRQ	2.28 ± 0.12	3 (12) 1 (17) 3 1 (1
MN J0948+0022	J0948.8+0021*	J0948.8+0020*	J0949.0+0021*	NLSy1	2.32 ± 0.05	
MN J1118-0413	J1118.2-0411*			AGN	2.56 ± 0.08	
2 1126+37	J1129.0 + 3705	24 C.	12.00	AGN	2.08 ± 0.13	Part of a duplicate association. Most probable counterpart is a BLL.
C 264	J1145.1+1935*		· · · ·	FRI	1.98 ± 0.20	
KS 1203+04	J1205.4 + 0412	104.2.2		SSRQ	2.64 ± 0.16	Part of a duplicate association. The other counterpart is a FSRQ.
1 87	J1230.9+1224*	J1230.8+1224*	J1230.8+1223*	FRI	2.04 ± 0.07	Abdo et al. (2009d)
C 275.1	J1244.1+1615	2017		SSRQ	2.43 ± 0.17	1 Soufort
B 1310+487	J1312.7+4828*	J1312.8+4828*	J1312.4+4827*	AGN	2.04 ± 0.03	i Jeyleit
en A Core	J1325.4-4301*	J1325.6 - 4300	J1325.6 - 4300	FRI	2.70 ± 0.03	radio core 1 CCC (2)
en A Lobes	J1324.0 - 4330e	J1324.0-4330e	J1322.0 - 4515	FRI	2.53 ± 0.05	giant lobes detected (Abdo et al. 2010b)
C 286	J1330.5+3023*			SSRQ/CSS	$2.60 {\pm} 0.16$	
en B	J1346.6 - 6027	J1346.6 - 6027	0.07	FRI	2.32 ± 0.01	Katsuta et al. (2013) 7 SSRQ
ircinus (J1413.2-6518			Seyfert	2.43 ± 0.10	Hayashida et al. (2013)
C 303	J1442.6+5156*	10.00		FRI	1.92 ± 0.18	5 NLSv1
KS 1502+036	J1505.1+0326*	J1505.1+0324*	J1505.0+0328*	NLSyl	2.61 ± 0.05	•••••
XS 1613-251	J1617.3-2519	J1617.6-2526c		AGN	2.59 ± 0.10	Part of a duplicate association. Most probable counterpart is a BCU II.
KS 1617-235	J1621.1-2331*	J1620.5-2320c	· · · ·	AGN	2.50 ± 0.23	sentensi na sawana kaca mana asin'ny tanàna mandritra dia mandritra dia mampiasa dia mampiasa dia 1990.
GC 6251	J1630.6+8232*	J1629.4+8236	J1635.4+8228*	FRI	2.22 ± 0.08	+ NLSy1 FBQS J1644+2619 (D'Ammando et al. 2015, MNRAS, 452, 52 and CSO PKS 1718-649 (Migliori et al. 2016, ApJ, 821, L31)
C 380	J1829.6+4844*	J1829.7+4846*	J1829.8+4845*	SSRQ/CSS	$2.37 {\pm} 0.04$	
KS 2004-447	12007 8-4429*	12007 9-4430*	12007 9-4430*	NLSvl	2 47±0 09	

Table 5. Non-blazar objects and misaligned AGN

dammando@ira.inaf.it

First all-sky census between 50 GeV and 2 TeV

- It finds 360 sources, with 61000 photons collected in 80 months using Pass 8 data
- The 2FHL catalogue contains 282 sources not detected by the IACTs
- The 2FHL catalogue contains 57 sources not included in the 3FGL and 48 never detected in γ -rays

Rotation of polarization angle during a y-ray flare

Gamma-ray Space Telescope

• double-peak structure in γ -rays for 3C 279 during 2008-2009 with factor ~ 10 variations

• Isolated X-ray flare

• 2nd gamma-ray flare simultaneous to a drastic change of the optical polarization angle in about 20 days suggesting a nonaxisymmetric structure of the jet

 \bullet No new jet component ejected at the time of the $\gamma\text{-ray}$ flare

Possible scenarios:

- helical magnetic field model
- bend jet model
- "flow-through" (jet wobbling) scenario

Abdo et al. 2010, Nature, 463, 919

Minute time-scale variability at HE in 3C 279 Sermi

Gamma-ray Space Telescope

Quasi-periodicity of PG 1553+113 in y-rays

A long-term oscillating trend is visually evident from the LAT γ -ray light curves of PG 1553+113.

An apparent quasi-periodicity seems to be present in γ-rays.

Possible interpretations are:

- SMBH binary system
- QPO from helical path or flow instabilities
- jet precession

Gamma-ray Space Telescope

Ackermann et al. 2015, ApJ, 813, L41

Workshop Macroarea 4 – 2016 June 6

First γ-ray Imaging of Cen A Giant Lobes

Over $\frac{1}{2}$ of the total >100 MeV observed LAT flux in the lobes due to IC of CMB (and EBL)

Gamma-ray Space Telescope

Multimessenger Astrophysics with Fermi

Coincidence of a high-fluence outburst from the FSRQ PKS 1424-418 with a PeV-energy neutrino event observed by IceCube.

Kadler et al. 2016, Nature Physics

Axion-like particles would evade pair production in broad line region of FSRQ (e.g. short time variability observed at VHE for 4C +21.35)

The LIGO localization arc for the event GW150914 became observable by Fermi LAT ~4000 s after the GW event, and an upper limit on different timescales was obtained.

Abbott et al. 2016

The future of the γ -ray astronomy

Gamma-ray Space Telescope

> γ-ray astronomy is a relatively young science and only in the last years we started to detect a significant number of sources at HE and VHE

Credits: Gabriele Ghisellini