The next gamma-ray MeV-GeV mission: the e-ASTROGAM project

Proposed for the ESA M4 call; currently under study for enhancement and reconfiguration for the ESA M5 call. e-ASTROGAM is focused on gamma-ray astrophysics in the range 0.3-100 MeV with excellent capability up to GeV energies.

History and heritage

Collaboration

INAF, INFN, University of Rome 2 CSNSM, IRAP, APC, CEA, LUPM, IPNO ICE (CSIC-IEEC), IMB-CNM (CSIC) University College Dublin MPI, Universität Mainz DTU University of Geneva KTH University of Tokyo loffe Institute NASA GSFC, NRL, Clemson Un., UC at Berkeley A new window for Galactic, extragalactic & and multi-messenger science.

 Broad band (0.3 MeV – 3 GeV), focused on the mostly unexplored energy range (0.3-100 MeV). Continuum & line detection, polarization measurements.

e-ASTROGAM Sensitivity (M5)

- 4 towers
- 50 layers of 5×5 double sided Si strip detectors
- Each DSSD has a total area of 9.5×9.5 cm², a thickness of 400 (500) μm, readout pitch of 240 μm (384 strips per side), and a guard ring of 1.5 mm
- Spacing of the Si layers:

7.5 mm

 The DSSDs are wire bonded strip to strip to form 2-D ladders

LEO orbit of altitude 520-550 km 2.5 – 3 sr FoV Launch 2029 – 2030 3-yr mission

Angular resolution

COMPTEL 1-30 MeV

- > ASTROGAM will have unprecedented angular resolution in the MeV domain.
- a large fraction of the Galactic source and diffuse components will be resolved.

Simulated 1-3 MeV sky of the Cygnus region assuming 3FGL source and diffuse extrapolations to MeV energies.

The e-ASTROGAM core science

Extreme phenomena in the era of new astronomy
Gravitational waves

The mysteries of the GC and Inner Galaxy
Central BH, compact objects, anti-matter

Supernovae, nucleosynthesis, and Galactic chemical evolution

e-ASTROGAM Sensitivity (M5)

Table 1. e-ASTROGAM line sensitivity (3σ in 10^6 s) compared to that of INTEGRAL/SPI					
E (keV)	FWHM (keV)	Origin	SPI sensitivity (ph cm $^{-2}$ s $^{-1}$)	e-ASTROGAM sens. (ph cm $^{-2}$ s $^{-1}$)	Improvement factor
511	1.3	Narrow line component of the e+/e- annihilation radiation from the Galactic center region	5.2×10^{-5}	4.1×10^{-6}	13
847	35	⁵⁶ Co line from thermonuclear supernovae	2.3×10^{-4}	3.5×10^{-6}	66
1157	15	44Ti line from core-collapse supernova remnants	9.6×10^{-5}	3.6×10^{-6}	27
1275	20	²² Na line from classical novae of the ONe type	1.1×10^{-4}	3.8×10^{-6}	29
2223	20	Neutron capture line from accreting neutron stars	1.1×10^{-4}	2.1×10^{-6}	52
4438	100	¹² C line produced by low-energy cosmic rays in the inner Galaxy	1.1×10^{-4}	1.7×10^{-6}	65

Adapted from Takahashi et al. (2013)

- **ASTRO-H/SGD**: $S(3\sigma)$ for 100 ks exposure of an isolated point source
- **COMPTEL** and **EGRET**: sensitivities accumulated during the whole duration of the CGRO mission (9 years)
- **Fermi/LAT**: 5σ sensitivity for a high Galactic latitude source and after 1 year observation in survey mode
- ASTROGAM $3\sigma/5\sigma$ sensitivity for a 1-year effective exposure of a high Galactic latitude source

e-ASTROGAM will gain a factor 10-60 in line sensitivity compared to INTEGRAL/SPI

Discovery potential

Sources and phenomena not accessible by Fermi-LAT and X-ray detectors

— Galactic sources:

- accreting with MeV tails
- pulsars with 1-10 MeV cutoffs
- microquasars going from thermal to non-thermal, jet launching, hadronic vs. leptonic
- Nuclear lines

– AGNs

- MeV blazars (high-z blazars)
- Tidal disruptions in supermassive BHs at their peak energy
- Radio galaxies in the MeV range

Extragalactic MeV background

— GRBs

Polarization and broad band spectroscopy

e-ASTROGAM Time domain astronomy

- A wide-field γ-ray observatory operating at the same time as facilities like LSST and SKA will give a more coherent picture of the transient sky.
- CTA science related to variable sources will need a coverage of the γ-ray sky at lower energies to trigger Target-of-Opportunity observations.

Observatory

- an Observatory open to the community
 - Program based on Key Pointings (2)
 - ToO observations performed with fast reaction
- most open & fast use of the data
 - Quicklook results, fast alerts for transient sources
 - Standard products in friendly format
- a very large community involved (from radio to TeV)

Multifrequency, multimessenger

- Multifrequency
 - Radio (SKA, ALMA, VLA)
 - Optical telescopes (e.g., LSST)
 - X-rays (Athena)
 - TeV (CTA, HAWK).
- Multimessenger
 - gravitational waves
 - neutrinos
- Very large communities and potential users in Europe, and across the world.