The HERMES project

High Energy Rapid Modular Ensamble of Satellites

Luciano Burderi, University of Cagliari

Collaborators:

Lorenzo Amati, INAF IASF Bologna Angelo Antonelli, INAF Rome Astronomical Observatory Angela Bongiorno, INAF Rome Astronomical Observatory Enrico Costa, INAF IAPS Roma Tiziana di Salvo, University of Palermo Marco Feroci, INAF IAPS Roma Fabrizio Fiore, INAF Rome Astronomical Observatory Filippo Frontera, University of Ferrara Rosario Iaria, University of Palermo Claudio Labanti, INAF IASF Bologna Alessandro Riggio, University of Cagliari Andrea Sanna, University of Cagliari Fabiana Scarano, University of Cagliari Andrea Vacchi, INFN Trieste

I Workshop Nazionale di Macroarea 4 su Astrofisica Relativistica e Particellare 6-7 Giugno 2016, Area di Ricerca CNR, Bologna

The Gamma-Ray Burst phenomenon

- sudden and unpredictable bursts of hard-X / soft gamma rays with huge flux
- most of the flux detected from 10–20 keV up to 1–2 MeV,
- fluences for very bright GRB (about 3/yr) 25 counts/cm²/s (GRB 130427A 160 counts/cm²/s)
- bimodal distribution of duration (0.1–1.0 s & 10.0–100.0 s)
- measured rate (by an all-sky experiment on a LEO satellite): ~ 0.8 /day (estimated true rate ~ 2 / day)
- evidence of submillisecond structures

The Gamma-Ray Burst phenomenon

Prompt Emission:

Short: $\tau \approx 0.2$ sec, Fluence $\approx 4 \times 10^{-7} \text{ erg/cm}^2 (25 \text{ keV} - 1 \text{MeV})$

=> Binary NS mergers (GW sources)

Long: $\tau \approx 25$ sec, Fluence $\approx 8 \times 10^{-6} \text{ erg/cm}^2 (25 \text{ keV} - 1 \text{MeV})$

=> Hypernovae (SNe Massive Stars)

Counts / 31.25 ms

80

40

The Gamma-Ray Burst phenomenon

Millisecond variability (minimum variability time-scale, MacLachlan et al. 2013) Short: 3 msec (wavelet techniques)

Long: 30 msec (wavelet techniques)

Internal shock model (ultarelativistic, $\gamma \approx 10^2 \div 10^3$, colliding shocks)

GRB Luminosity Function: <8 c/s (50-300) keV short

> 8 c/s (50–300) keV long

Number of GRB and Fluxes

Short GRBs:

Duration: 0.2 sec,

Counts (50-300 MeV): 8 c/cm²/s

Averaged photon energy: $(Emax x Emin)^{1/2} = 122 \text{ keV}$

Fluence: $0.2 \ge 8 \ge 122 \text{ keV/cm}^2 = 3 \ge 10^{-7} \text{ erg/cm}^2$

Fermi GBM - 4-years data

14 Short GRB burst per year with

count rate > 8 c/s

Simulations of a bright short GRB (50 - 300 keV)Background: 0.43 c/s/cm²/steradiansBackground for 2 steradians FOV: 0.86 c/cm²/sProton fluxes in LEO (580 km): 0.165 c/cm³/sActivation in equatorial LEO (580 km): $\leq 0.3 \text{ c/cm}^3$ /s (not included)Burst duration: 0.2 secSource count rate: 7.875 ph/cm²/sExponential shot rate: 100 shot/sBand 50-300 keVExponential shot decay time: 1 msec

Delays from cross-correlation analysis

Cross-correlation of GRB lightcurves from two satellites of 100 cm2 effective area in the 50-300 keV band:

Simulation	Radius [cm]	Expected delay [s]	Measured delay [s]	Error [s]	Error in unit of σ
sim_1.fits	1·10 ⁹	$6.67128190 \cdot 10^{-2}$	$6.66744709 \cdot 10^{-2}$	$0.0561 \cdot 10^{-3}$	0.6830805064
sim_2.fits	$9.9 \cdot 10^8$	$6.60456908 \cdot 10^{-2}$	$6.59104213 \cdot 10^{-2}$	$0.1233 \cdot 10^{-3}$	1.0970766361
sim_3.fits	9·10 ⁸	$6.00415371 \cdot 10^{-2}$	$5.98946773 \cdot 10^{-2}$	$0.1759 \cdot 10^{-3}$	0.8349052625
sim_4.fits	$8.1 \cdot 10^8$	$5.40373834 \cdot 10^{-2}$	$5.40064611 \cdot 10^{-2}$	$0.0791 \cdot 10^{-3}$	0.3911742201
sim_5.fits	$7.2 \cdot 10^8$	$4.80332297 \cdot 10^{-2}$	$4.80094887{\cdot}10^{-2}$	$0.0735 \cdot 10^{-3}$	0.3228751331
sim_6.fits	$6.3 \cdot 10^8$	$4.20290760 \cdot 10^{-2}$	$4.19750251 \cdot 10^{-2}$	$0.0662 \cdot 10^{-3}$	0.8163554594
sim_7.fits	$5.4 \cdot 10^8$	$3.60249223 \cdot 10^{-2}$	$3.59473675 \cdot 10^{-2}$	$0.0646 \cdot 10^{-3}$	1.2007242824
sim_8.fits	$4.5 \cdot 10^8$	$3.00207686 \cdot 10^{-2}$	$2.9960330 \cdot 10^{-2}$	$0.0764 \cdot 10^{-3}$	0.7907702189
sim_9.fits	3.6·10 ⁸	$2.40166149 \cdot 10^{-2}$	$2.39778887 \cdot 10^{-2}$	$0.0709 \cdot 10^{-3}$	0.5464393152
sim_10.fits	$2.7 \cdot 10^8$	$1.80124611 \cdot 10^{-2}$	$1.79572739 \cdot 10^{-2}$	$0.0612 \cdot 10^{-3}$	0.9024896271
sim_11.fits	$1.8 \cdot 10^8$	$1.20083074 \cdot 10^{-2}$	$1.19955540 \cdot 10^{-2}$	$0.0864 \cdot 10^{-3}$	0.1475920279
sim_12.fits	9·10 ⁷	$0.60101537 \cdot 10^{-2}$	5.99619420.10-3	$0.0766 \cdot 10^{-3}$	0.1822152926

Error in cross-correlation accuracy: 84 μ sec Number of independent estimate of delays: Nsatellite – 1 Position of the source in the sky, (α , δ): 2 parameters Statistical improvement in determining the position in the sky with Nsatellite: (Nsatellite –1– 2)^{1/2} = 8.5 Error in delay accuracy: 8.5 μ sec (Nsatellite = 100) 12 μ sec (Nsatellite = 50)

Determination of source position through delays

Error in accuracy \approx c \times (error in delay accuracy / average baseline)

```
Maximum baseline = 2 \times (\text{Rearth} + \text{Hsatellite}) = 2 \times (6371 + 580) \text{ km}
```

Average baseline = Maximum baseline / 2

Error in accuracy = 75 arcsec (for Nsatellite 100)

Error in accuracy = 110 arcsec (for Nsatellite 50)

Detector and satellite

Detector

Scintillator Crystals: CsI (classic) or LaBr₃ or CeBr₃ (rise – decay: 0.5 - 20 ns) Photo-detector: Silicon Photo Multiplier (SiPM) or Silicon Drift Detector (SDD) Effective area: 10×10 cm Crystal thickness: 1 cm Weight: 0.5 - 1 kgEnergy band: 50 - 300 keVEnergy resolution: 15% at 30 keV Temporal resolution: ≤ 10 nanoseconds **Satellite** 5 detectors on a cubic structure + solar panel Weight: $\leq 10 \text{ kg}$ Shielding Grating shields to reduce proton flux to $0.165 \text{ c/cm}^3/\text{s}$ **Collimator** 2 stearadians (0.6 stearadians Icosahedron 20 faces, 0.13 stearadians Snub Dodecahedron 92 faces, strong reduction of X-ray background) **Data recording** Continuous recording of buffered data

The HERMES mission

High Energy Rapid Modular Experiment Satellites (a nanosatellite swarm monitor for GRB & High Energy GW counterparts) **GRB** statistics Average GRBs: 300/yr

Bright GRBs: 30/vr GRB structure: duration 25 s, shot noise $\tau = 1$ ms, rate = 100/s Instrument $N \ge 100$ Nano Satellites (Modules) in Low Earth Orbit Average separation between Modules: 6000 km Module (weight ≤ 10 kg)

5 Detectors

Field of View of each Detector: 2 steradians GPS absolute temporal accuracy < 100 nanoseconds GPS based Module positional accuracy: $\leq 10 \text{ m}$

Detector

Scintillator Crystals: CsI (classic) or LaBr₃ or CeBr₃ (rise – decay: 0.5 - 20 ns) Photo-detector: Silicon Photo Multiplier (SiPM) or Silicon Drift Detector (SDD) Effective area: 10×10 cm Weight: 0.5/1 kg Energy band: 3 keV – 50 MeV Energy resolution: 15% at 30 keV Temporal resolution: ≤ 10 nanoseconds **Mission performance** Accuracy in delays between Average GRB lightcurves of two Modules (cross correlation techniques): 20 microseconds for Average GRBs Continuous recording of buffered data Triggered to ground telemetry transmission Accuracy in positioning of Bright GRBs: 75 – 110 arcsec Range of accuracy in positioning of GRB: from 25 to 330 arcsec Modular structure: overall effective area 1 m² every 100 modules

Scintillator Crystal

The Uncertainty Relation $\Delta r \Delta t > G\hbar/c^4$ and the space-time diagram for the intervals (Burderi, Di Salvo, Iaria, Physical Review D, 93, 064017, 2016)

The new Uncertainty Principle and the Minkowski metric: preserving Lorentz Invariance

GRB & Quantum Gravity (Massive Photons or Lorentz Invariance Violation)

MP or LIV predictions:

 $|v_{phot}/c - 1| \approx \xi E_{phot}/(M_{QG} c^2)^n$ ($\xi \approx 1$ n = 1,2) and $M_{QG} = \zeta m_{PLANCK}$ ($\zeta \approx 1$)

$$\Delta t_{\text{MP/LIV}} = \xi \left(D_{\text{TRAV}}/c \right) \left[\Delta E_{\text{phot}}/(M_{\text{QG}} c^2) \right]^n$$
$$D_{\text{TRAV}}(z) = (c/H_0) \int_0^z d\beta (1+\beta) / \left[\Omega_\Lambda + (1+\beta)^3 \Omega_M \right]^{1/2}$$

Band		Flux	Fluence	Expected Δt_{OG}	Expected $\Delta t_{OGR} \propto D_{GRB}/c$	
		(Bright GRBs) $(1 \text{ m}^2, 10 \text{ s})$		for Quantum Grav	for Quantum Gravity effects	
				z = 0.9	z = 3.0	
(keV)		$(counts/cm^2/s)$	(counts)	(μs)	(µs)	
2 -	25	24.7	2,470,000	0	0	
25 -	50	6.2	620,000	1	2	
50 -	100	5.5	550,000	2	3	
100 -	300	6.1	610,000	3	5	
300 -	1000	2.4	240,000	12	19	
1000 -	2000	0.4	40,000	28	45	
2000 -	5000	0.15	15,000	65	104	
5000 -	50000	0.07	7,000	421	671	

Conclusions I

All sky monitor of Gamma Bursts (GRB, Magnetar, High Energy counterparts of Gravitational Waves, etc.)

Accuracy in positioning of Bright GRBs: 75 – 110 arcsec

range of accuracy in positioning of GRB: from 25 to 330 arcsec

 1 m^2 effective area (50 – 300 keV)

Energy resolution: 15% at 30 keV

Temporal resolution: ≤ 10 nanoseconds

Quantum Gravity: probing the ultimate structure of space-time

Time lags

caused by prompt emission mechanism: complex dependence from E_{phot} (Band II) and E_{phot} (Band I)

independent of $D_{GRB}(z_{GRB})$

caused by Quantum Gravity effects:

 $\propto |E_{phot}(Band II) - E_{phot}(Band I)|$

 $\propto D_{GRB}(z_{GRB})$

the two effects can be disentangled with experimentally measured:

 Δt_{OGR} (HERMES)

 z_{GRB} (optical, follow-up observations of host galaxy)

Conclusions II

1) Cheap:

simple detector & nano(small)satellites: up to 100 million € for 100 satellites see e.g. Thales Alenia Space: 40 kg - 100 W, 3 axes pointing, LEO, cost ≈ 1 M€ ("deep throat", private comm.)

2) Fast:

few years (\leq 5 years) to flight the first satellite(s)

3) Modular:

robust against one or more satellite(s) failure

Growing interest in constellation of small satellites...

August 22 - 26, 2016, Innsbruck, Austria

2nd BRITE-Constellation Science Conference "small satellites - big science"

That's all Folks!