Pulsar Wind Nebulae

Niccolo' Bucciantini

INAF - Osservatorio di Arcetri INFN - Sezione di Firenze UniFi - Dipartimento di Fisica & Astronomia

N. Bucciantini: MA4 - 6 June 2016, Bologna

1

mercoledì 8 giugno 16

Pulsar Wind Nebulae

- PWNe are hot bubbles of relativistic particles and magnetic field emitting non-thermal radiation.
- Galactic accelerators. The only place where we can study the properties of relativistic shocks (as in GRBs and AGNs)
- Allow us to investigate the dynamics of relativistic outflows

Arcetri: Bucciantini, Bandiera, Amato. UniFi: Del Zanna, Olmi.

PWNe beyond PWNe

PWNe are prototypical example of the interaction of a relativistic outflow with the confining environment:

PWNe beyond PWNe

PWNe are prototypical example of the interaction of a relativistic outflow with the confining environment:

- O Dynamics of Interaction (instabilities, role of magnetic field, efficiency of confinement, etc...).
- Acceleration processes: amplification of magnetic field at shocks, origin of non-thermal particles, efficiency of acceleration hard vs soft distributions.
- O Engine signatures: energy outflow and collimation, signature of leptons and hadrons, pair creation processes in the magnetospheres of compact objects

PWNe beyond PWNe

PWNe are prototypical example of the interaction of a relativistic outflow with the confining environment:

- O Dynamics of Interaction (instabilities, role of magnetic field, efficiency of confinement, etc...).
- Acceleration processes: amplification of magnetic field at shocks, origin of non-thermal particles, efficiency of acceleration hard vs soft distributions.
- O Engine signatures: energy outflow and collimation, signature of leptons and hadrons, pair creation processes in the magnetospheres of compact objects

Magnetar Wind Nebulae in the millisecond magnetar model for L/S GRBS PWNe shock as typical relativistic shock accelerators (GRBS /AGNs) PWNe as antimatter reservoirs/factories int he galaxy (PAMELA positron excess)

Going Beyond 2D

 In the past 10 years the main focus on PWNe modeling has been the attempt to reproduce the jet-torus morphology observed in X-rays

Going Beyond 2D

- In the past 10 years the main focus on PWNe modeling has been the attempt to reproduce the jet-torus morphology observed in X-rays
- Ability to model the outflow properties of oblique rotators in accord with FE simulations

Going Beyond 2D

- In the past 10 years the main focus on PWNe modeling has been the attempt to reproduce the jet-torus morphology observed in X-rays
- Ability to model the outflow properties of oblique rotators in accord with FE simulations

Comparison with Observations

3D vs 2D

3D Simulations

Olmi et al. (in prep)

N. Bucciantini: MA4 - 6 June 2016, Bologna

mercoledì 8 giugno 16

7

3D Simulations

Olmi et al. (in prep)

3D Simulations

Jet dominated systems?

Olmi et al. (in prep)

Acceleration at the TS

1000

Sironi & Spitkovsky 2008

Diffusive Fermi Process shown to work only for small magnetization soft spectrum

Reconnection likely to work of higher magnetization (but constraints on multiplicity - Hard spectrum can be obtained

PWNe are the only place where we can with "some confidence" connect a position at the shock to an given regime in the outflow

Imaging the Wind

Wisp properties are wavelength dependent

Do wisps trace different injection condition at the shock?

Imaging the Wind

Ahead....

- How do PWNe evolve? What is the role and confinement of the SNR? How do they interact with clumpy environment? Can we developed a unified model for old systems?
- What is the role of turbulence in PWNe? How does it relates with their emission properties? Is there distributed re-acceleration?
- What is the origin of the radio emitting particles? Are the relic? Are they captured from evaporating filaments? Do they come from the PSR?
- How good are PWNe at accelerating pairs? How good are they at confining them?
- Can we use PWNe at various evolutionary stages to investigate the physics of the engine?

Ahead....

- How do PWNe evolve? What is the role and confinement of the SNR? How do they interact with clumpy environment? Can we developed a unified model for old systems?
- What is the role of turbulence in PWNe? How does it relates with their emission properties? Is there distributed re-acceleration?
- What is the origin of the radio emitting particles? Are the relic? Are they captured from evaporating filaments? Do they come from the PSR?
- How good are PWNe at accelerating pairs? How good are they at confining them?
- Can we use PWNe at various evolutionary stages to investigate the physics of the engine?

Thank you