

# **METIS Status**

Ester Antonucci

Science & Technical Meeting II

Circolo dei Lettori, Torino

12 December 2012









## Solar Orbiter Coronagraph

| Milestones                                     |              | Coronagraph/Model Payload                                                     |
|------------------------------------------------|--------------|-------------------------------------------------------------------------------|
| Mission Proposal                               | January 2000 | 3 <u>Imaging</u> Channels VL, UV, EUV<br>(VL polarized, HI 121.6, He 30.4 nm) |
| METIS Proposal<br>coronal + disk<br>instrument | January 2008 | 3 <u>Imaging</u> Channels VL, UV, EUV<br>& <u>Spectroscopy UV, EUV</u>        |
| METIS Selection                                | March 2009   | C <u>oronagraph only</u>                                                      |

**MPS** 





OACt

i saint

**O**APA

OATs



**METIS** 



# Solar Orbiter Coronagraph

METIS

| Milestones                                 |                   | S/C Pointing           | Coronagraph - Model Payload                                                              |
|--------------------------------------------|-------------------|------------------------|------------------------------------------------------------------------------------------|
| Delta Assessment Study                     | 1999              | sun center             |                                                                                          |
| Mission Proposal                           | January 2000      | sun center             | •3 Imaging Channels VL, UV, EUV<br>(VL polarized, HI 121.6, He 30.4 nm)                  |
| Assessment Study Report                    | July 2000         | sun center             | idem                                                                                     |
| SPC Selection                              | October 2000      |                        |                                                                                          |
| ESA Remote Sensing<br>Payload WG Report    |                   | off-center<br>pointing | Coronagraph must be able to cope with likely offsets                                     |
| Confirmed                                  | June 2004         |                        |                                                                                          |
| Payload Definition Doc. AO                 | September<br>2007 | off-pointing           |                                                                                          |
| METIS Proposal<br>corona + disk instrument | January 2008      |                        | •3 Imaging Channels VL, UV, EUV<br>•Spectroscopy<br>compensation for off-center pointing |
| <b>METIS Instrument Selection</b>          | March 2009        |                        | Selected coronagraph only                                                                |
| Mission Selection                          | October 2011      |                        |                                                                                          |
|                                            | CAPA OATS         |                        |                                                                                          |



## July 2012 Descoping

#### METIS configuration @ PDR

- •5 channels
- •5 mechanisms

In order to reduce mass, power, cost, complexity

<u>Cancelled</u> ✓ 2 channels ✓ 3 mechanisms + ✓ QM model







#### **METIS @ PDR**

## Coronal Imaging

- VL imaging
- UV (H) imaging
- ✓ EUV (He) imaging

## Coronal spectroscopy

- ✓ UV (HI) spectroscopy
- EUV spectroscopy

#### Mechanisms + relative subsystem

- ✓ Internal door + mechanism
- ✓ Repointing mechanism

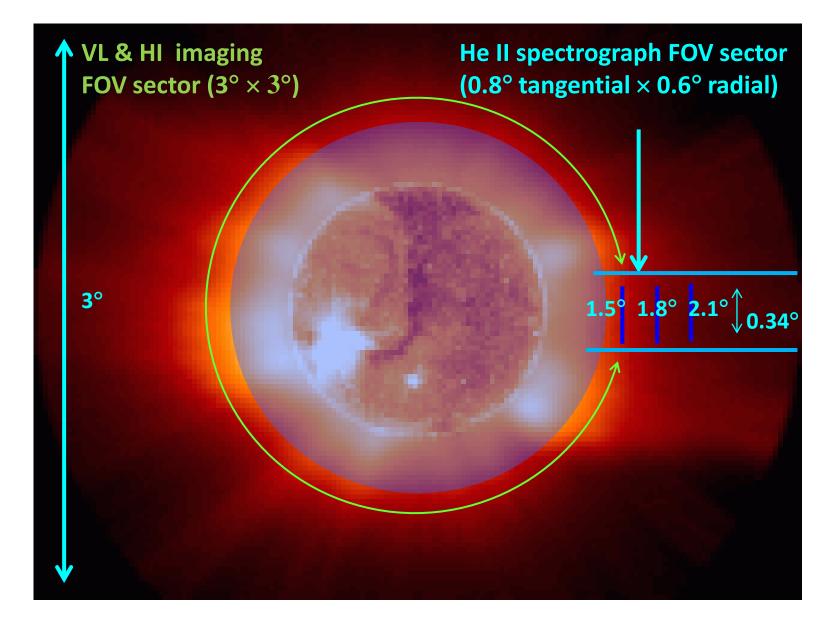
VASE

- ✓ 2 EUV Al filter + filter mechanism
- Internal occulter mechanism
- (Detector door mechanism)

## METIS DESCOPING July 2012

### Coronal Imaging

- VL imaging
- UV (H) imaging
- -


#### Coronal spectroscopy

- -
- EUV (He) spectroscopy

#### Mechanisms + relative subsystem

- -
- -
- -
- Internal occulter mechanism
- (Detector door mechanism)







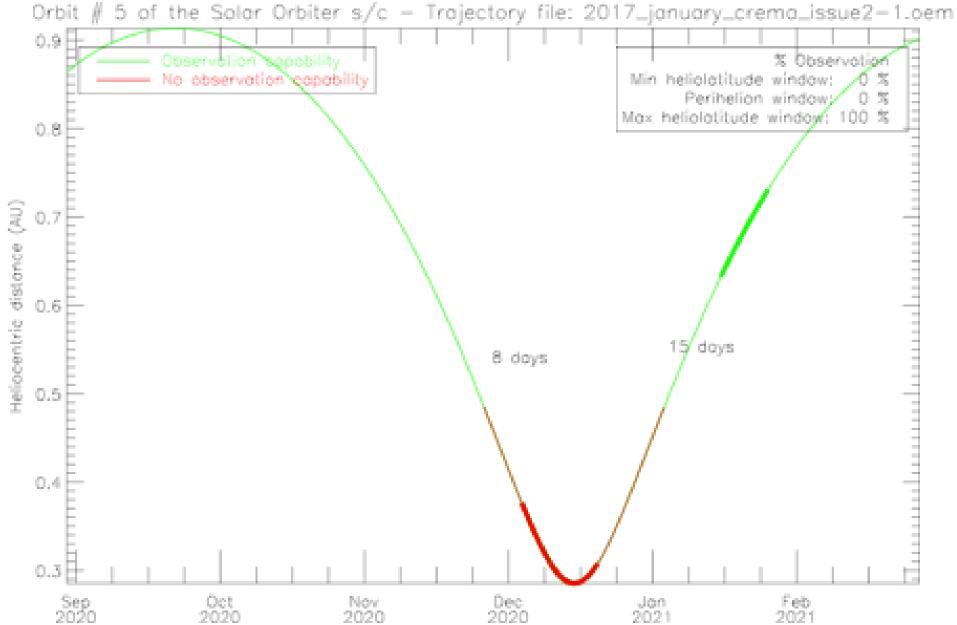
## **No External Re-Pointing Mechanism**

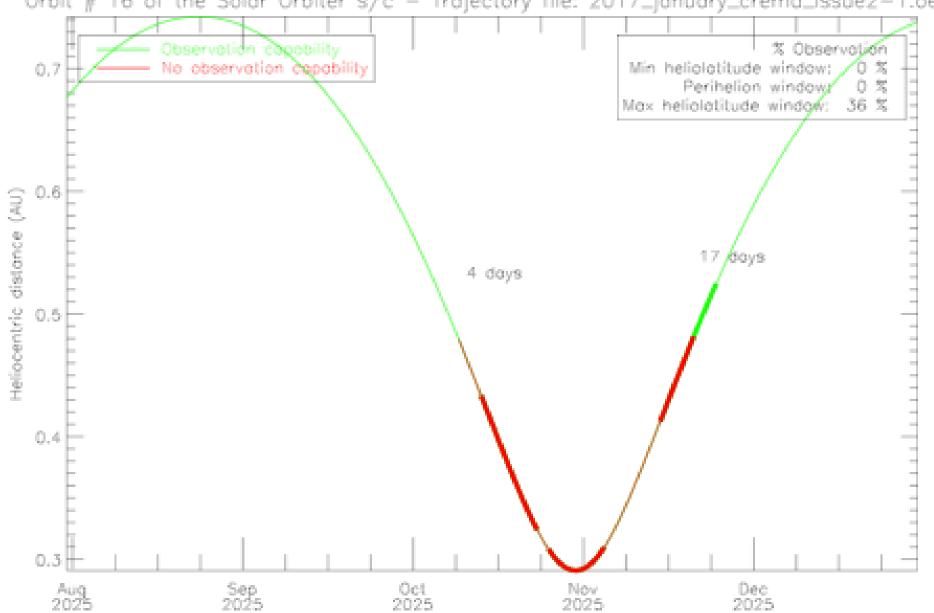
No METIS observations at perihelion and in the southern obs. windows when S/C offpointing > 3 arcmin

### However METIS best science is at perihelion

ΜΕΤΙ

Corotation: unique opportunity for coronagraphic obs.


- Medium-term evolution of the corona (pre-CME evolution, etc.)
- Turbulence study


Joint SO science:

- CME flags (halo CMEs obs.in corona and detected by the in situ instruments)
- **complementarity of the SO instruments:** METIS observes the region linking the base of the solar atmosphere to the inner heliosphere.

CME science: without coronagraphic measurements??







Orbit # 16 of the Solar Orbiter s/c - Trajectory file: 2017\_january\_crema\_issue2-1.cem



## November 2012Further Descoping

In view of a 30<sup>th</sup> of November approval by part of the ASI CdA

METIS configuration @ PDR

•5 channels

•5 mechanisms

in order to further reduce cost

Cancelled in order to reduce cost, complexity, mass and power ✓ 2 channels + 1 channel ✓ 3 mechanisms (including ERM) + ✓ QM model

✓ structural and thermal model

a and the new of

VASE





#### **METIS @ PDR**

### Coronal Imaging

- VL imaging
- UV (H) imaging
- EUV (He) imaging

#### Coronal spectroscopy

- UV (HI) spectroscopy
- ✓ EUV spectroscopy

#### Mechanisms + relative subsystem

- Internal door + mechanism
- Repointing mechanism
- 2 EUV Al filter + filter mechanism
- Internal occulter mechanism
- Detector door mechanism

**Ufsi** 

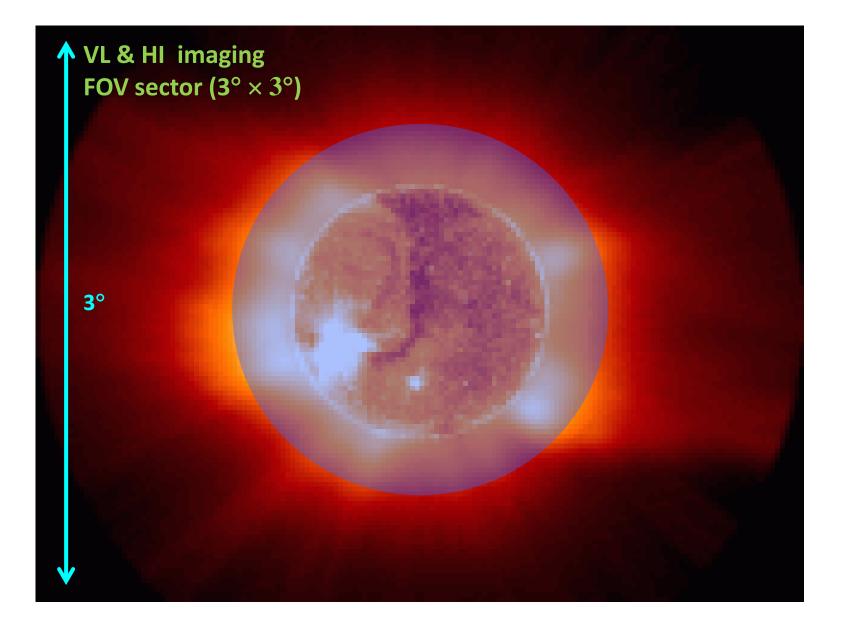
VASE

#### METIS DESCOPING 13 November 2012

### Coronal Imaging

- VL imaging
- UV (H) imaging
- -

#### Coronal spectroscopy


- -
- -

#### *Mechanisms* + *relative subsystem*

- -
- -
- -
- Internal occulter mechanism

ΞD







#### **METIS @ PDR**

#### METIS DESCOPING 6 December 2012

#### In view of 20 December CdA meeting

Coronal Imaging

- VL imaging
- UV (H) imaging
- EUV (He) imaging

#### Coronal spectroscopy

- UV (HI) spectroscopy
- EUV spectroscopy

#### *Mechanisms* + *relative subsystem*

- Internal door + mechanism
- Repointing mechanism
- 2 EUV Al filter + filter mechanism
- ✓ Internal occulter mechanism
- Detector door mechanism

### Coronal Imaging

✓ VL + UV imaging vs. VL imaging

#### Coronal spectroscopy

- -
- -

#### Mechanisms + relative subsystem

- -
- -
- ) \_
- -



## VL + UV Channels

| Solar Orbiter Top-level Science Questions                                                             | Unique METIS contribution (A+B)<br>The only Solar Orbiter instrument observing<br>the:                |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| How and where do the <i>solar wind plasma</i> and <i>magnetic field</i> originate in the corona       | region where the solar wind is accelerated from ≈100 km/sec to near its asymptotic value              |  |  |
| How do <i>solar transients</i> drive heliospheric variability                                         | region where the first, most dramatic phase of<br>the propagation of coronal mass ejections<br>occurs |  |  |
| How do solar eruptions produce <i>energetic particle radiation</i> that fills the heliosphere         | path of the shock front accelerating particles in the solar corona                                    |  |  |
| How does the <i>solar dynamo</i> work and drive<br>connections between the Sun and the<br>heliosphere | overall magnetic configuration and discrimination of closed and open field regions of the corona      |  |  |

CIFN ASF CISI OAC OACT OATS OATS



LAM RATOIRE D'ASTROPHYSIQUE



## **VL** Channel

| Solar Orbiter Top-level Science Questions                                                             | Unique METIS contribution (A)                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| How and where do the <i>solar wind plasma</i> and <i>magnetic field</i> originate in the corona       | <i>No</i> information on the solar wind in corona                                                                                                                                                   |  |  |
| How do <i>solar transients</i> drive heliospheric variability                                         | Observation of the region where the first,<br>most dramatic phase of the propagation of<br>coronal mass ejections occurs, however <i>no</i><br>information on the directionality of the<br>eruption |  |  |
| How do solar eruptions produce <i>energetic particle radiation</i> that fills the heliosphere         | Observation the path of the shock front<br>accelerating particles in the solar corona,<br>however <i>no</i> information on the directionality<br>of the shock front                                 |  |  |
| How does the <i>solar dynamo</i> work and drive<br>connections between the Sun and the<br>heliosphere | <i>No</i> information to discriminate closed and open magnetic field lines                                                                                                                          |  |  |





ALILEO

| LEOLASTROFISICA      | METIS   | Achievable Scientific Objectives                                                                       | Solar Orbiter                       | METIS                                                                                                          |                   |
|----------------------|---------|--------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|
|                      |         |                                                                                                        | Core Science                        | Contribution                                                                                                   | Co <sup>sis</sup> |
|                      | UV&VL   | -Measure the electron density in the solar corona and its                                              | Solar wind origin                   | Unique, major                                                                                                  |                   |
| italiana             | channel | longitudinal distribution                                                                              | and acceleration                    | new core                                                                                                       | Citer             |
| Manona Augura Marina | (A+B)   | Solar wind:                                                                                            |                                     | science                                                                                                        | 1 orb             |
|                      |         | -Identify the coronal wind and measure its parameters:                                                 | Solar Coronal Mass                  |                                                                                                                | Solar             |
|                      |         | <ul> <li>velocity to discriminate fast and slow wind</li> </ul>                                        | Ejections origin and                |                                                                                                                |                   |
|                      |         | <ul> <li>acceleration to locate energy deposition in corona</li> </ul>                                 | propagation                         |                                                                                                                |                   |
|                      |         | mass and energy flux                                                                                   | Assalsmatics                        |                                                                                                                |                   |
|                      |         | Iongitudinal distribution                                                                              | Acceleration of                     |                                                                                                                |                   |
|                      |         | -Observe the coronal density fluctuations, and assess their role in the acceleration of the solar wind | energetic particles                 |                                                                                                                |                   |
|                      |         | -Trace, through the flows, the open coronal magnetic field                                             | Solar dynamo                        |                                                                                                                |                   |
|                      |         | and the overall magnetic topology                                                                      | (coronal magnetic<br>configuration) |                                                                                                                |                   |
|                      |         | Coronal mass ejection:                                                                                 |                                     |                                                                                                                |                   |
|                      |         | -Measure the                                                                                           |                                     |                                                                                                                |                   |
|                      |         | • timing                                                                                               |                                     |                                                                                                                |                   |
|                      |         | mass content                                                                                           |                                     |                                                                                                                |                   |
|                      |         | overall dynamics                                                                                       |                                     |                                                                                                                |                   |
|                      |         | <ul> <li>directionality to infer its geo-effectiveness</li> </ul>                                      |                                     |                                                                                                                |                   |
|                      |         | Iongitudinal distribution                                                                              |                                     |                                                                                                                |                   |
|                      |         | of the plasma erupted from the Sun.                                                                    |                                     |                                                                                                                |                   |
|                      |         | <ul> <li>-Identify the shock front where particles can be<br/>accelerated</li> </ul>                   |                                     |                                                                                                                |                   |
|                      | VL      | -Measure the electron density in the solar corona and its                                              | Solar Coronal Mass                  | Mainly                                                                                                         |                   |
|                      | channel | longitudinal distribution                                                                              | Ejections origin and                | context                                                                                                        |                   |
|                      | (A)     | Coronal mass ejections:                                                                                | propagation                         | instrument                                                                                                     |                   |
|                      | ()      | -Measure the                                                                                           | p. op «Batton                       |                                                                                                                |                   |
|                      |         | • timing                                                                                               | Acceleration of                     | moderate                                                                                                       |                   |
|                      |         | mass content                                                                                           | energetic particles                 | new science,                                                                                                   |                   |
|                      |         | <ul> <li>overall dynamics (partial)</li> </ul>                                                         |                                     | mainly in late                                                                                                 |                   |
|                      |         | <ul> <li>longitudinal distribution</li> </ul>                                                          |                                     | mission phase                                                                                                  |                   |
|                      |         | of the plasma erupted from the Sun.                                                                    |                                     |                                                                                                                |                   |
|                      |         | -Identify the shock front where particles can be                                                       |                                     |                                                                                                                | IELEX GALILEO     |
|                      | 1.15.7  | accelerated                                                                                            |                                     | NI R 1- 1-                                                                                                     | STOREMUM.         |
| 👩 IFN 🖾 SF) 🔰        | UV      | As the VL channel but only in the static regions of the                                                |                                     | Negligible<br>scientific                                                                                       |                   |
|                      | channer | corona, which however <i>cannot be unambiguously</i>                                                   |                                     | and a second | The and the and   |
|                      | (B)     | identified in UV coronal images                                                                        |                                     | return                                                                                                         |                   |



## Hypothesis.: No External Re-Pointing Mechanism

Best science at perihelion

METIS

High space resolution:

- •pxl = 5.6" (3.8" in VL) METIS as from Earth orbit, compared to
- •3.75" COR-1
- •14.7" COR-2 STEREO
- •11.4" C2
- •56" C3 LASCO
- •7" UVCS (110 kg instrument)

