IMAGING THE EUV CORONA WITH THE EXTREME ULTRAVIOLET IMAGER

PRECURSOR OBSERVATIONS FROM THE HECOR SOUNDING ROCKET EXPERIMENT

Frédéric Auchère, for the EUI consortium

2nd METIS science & technical meeting

EUI: Extreme Ultraviolet Imager

Channel	Parameter	Value
	Dimensions	
	- Optical bench	550x175x785mm
	- Electronics box	120x300x250mm
	Mass	18.20 kg
	Power	28 W
	Telemetry	20 kb/s
FSI dual EUV	Passbands	174 Å et 304 Å
	Field of view	5.2°
	Resolution (2 px)	9 arcsec
	Cadence	600 s
	Passband	174 Å
HRI EUV	Field of view	17'
	Resolution (2 px)	1 arcsec
	Cadence	2 s
HRI Lyman- α	Passband	1216 Å
	Field of view	17'
	Resolution (2 px)	1 arcsec
	Cadence	< 1s

EUV structures beyond 2R_s: EIT 171

12 December 2012

Auchère – Imaging the corona with EUI – METIS science & technical meeting

3/18

Wavelength choice

- 17.4 nm for 1MK corona (HRI-EUV context)
- 30.4 nm for cool plasma (HRI-Ly α contex)

Implementation

- Small entrance aperture reduces heat load
- Single mirror design maximizes response
- Al filter rejects visible & IR
- Dual band multilayer
- Filter wheel: Al/Zr/Al & Al/Mg/Al

Low roughness substrates

Improved superpolish: 0.22 Å RMS Local defects persist: 1.23 Å RMS

High reflectivity coatings: AI/Mo/B4C & AI/Mo/SiC

Addition of an occulting disk

- ... on the door
- Simple occulter design OK @ 174 & 304
- Door modifications are implemented
- Limited number of operations
 - Campaign mode
 - Only when far from the Sun (0.4)?

A

Helium Resonant Scattering in the Corona and Heliosphere

Herschel = HEIT + HECOR + SCORE PI J. D. Moses (Naval Research Laboratory)			
HEIT (US)	HECOR (FR)		
Solar disk @ 30.4 nm	He II coronagraph (30.4 nm)		
EM of EUVI / STEREO	FSI / Orbiter testbed		
SCORE (IT) Coronagraph Visible / H Ly g / He II Ly g			
METIS / Orbiter testbed			

- First proposal in 2001
- Selection in 2003
- Launched on September 14, 2009
- Selected for a re-flight in 2016

FSI precursor: HeCOR (Helium CORonagraph)

Launch

HECOR + EIT composite

What are the 'horns'? SCORE

He

The observed variations of I_{He} are linked to Helium abundance variations

What are the 'horns'? HeCOR

The observed variations of I_{He} are linked to Helium abundance variations

Potential extrapolation Expansion factor Courtesy A. Canou & T. Amari

12 December 2012 F. Auchère – Imaging the corona with EUI – METIS science & technical meeting

Conclusions

EUI

- Imaging of the corona up to a few R_s will be possible via Improvements of the optics (roughness, efficiency) Addition of an occulting disk on the door
- If METIS retains H channel, then H + He science still possible
- Obvious synergies with METIS (cf. Susanna's talk)
 HRI: source regions (ARs, CHs, plumes, etc.)
 FSI: overlapping FOVs but different lines

HeCOR results

- Validation of technologies for EUI / FSI
- Best images to date of the 30.4 nm corona up to 3R_s
- He II 30.4 nm line formed by resonant scattering
- He II dominates the band above 1.6 R_s
- Local variations of the He abundance
- Variations linked to the **B** morphology & expansion factor