

Outline

Why detect the (VL) polarized brightness?

METIS VL Polarimetric channel requirements

Polarized Brightness observations and evaluation (the eclipse case)

The images alignment procedure

The application of the knowledge from the eclipse to the METIS data

Conclusions

K-Corona Polarized Brightness Observations from METIS Why detect the solar K-corona polarized brightness?

0.35 0.30 0.25 0.20 0.15 0.10 0.05

METIS Visible Light Polarimetric Channel (requirements/1)

The driver for the METIS polarimeter performances is given by the accuracy in the estimation of the <u>electron density</u>

R	PB Equator	PB Equator	ΔPB	%	PB Pole	PB Pole	ΔΙ	PB %	
[Ro]	Units B _{Sun}	Counts (3 ex)	Equa	or Units B _{Sun} Counts (3 ex)		Pole			
			Kpol budget	Shot noise			Kpol budget	Shot noise	
1.5	3.99E-8	37322							-
1.6	2.70E-8	39066							
1.7	1.81E-8	36436				-		-	
1.8	1.22E-8	32199	K	_	Ne	Error Ne	Ne	EI EI	TOT NO
1.9	8.60E-9	27952	[Ro]	E	quator	Equator	Pole		Pole
2.0	6.29E-9	24571		((cm ⁻³)	%	(cm-3		%
2.1	4.78E-9	21799	1.5		7 13e6	0.1	1 70e	6	7.0
2.2	3.71E-9	19447	2.0		17-6	0.1	2.10-	-	0.0
2.3	2.89E-9	17096	2.0		.1/e0	0.8	5.198	2	9.2
2.4	2.27E-9	14937	2.5		3.72e5	15	9.64e	4	13.3
2.5	1.80E-9	13121	3.0	1	.69e5	(2.4)	3.95e	4	19.7
2.6	1.46E-9	11607	35		330/	3.2	2.03a	4	26.3
2.7	1.20E-9	10386	5.5			5.2	2.050	7	20.5
2.8	1.01E-9	9385	V.9	0.0	2.30E-10	2141	0.9	2J.1	I
2.9	8.56E-10	8529	10	6.9	1.97E-10	1965	1.0	27.6	<u> </u>
3.0	7.34E-10	7779	0.9	7.6	1.71E-10	1813	0.9	31.8	
3.1	6.33E-10	7113	1.0	8.6	1.49E-10	1673	1.0	35.5	'
3.2	5.50E-10	6471	0.9	9.3	1.30E-10	1533	0.9	39.0	
3.3	4.81E-10	5797	0.8	10.6	1.14E-10	1379	0.8	43.3	
3.4	4.23E-10	5182	1.0	11.1	1.01E-10	1236	1.0	46.1	
3.5	3.73E-10	4613	0.9	11.6	8.89E-11	1099	0.9	47.6]

Fineschi et al. Proc. of SPIE 590111 (2005)

METIS 2nd Science and Technical Meeting – Torino, 12-13 December 2012

METIS Visible Light Polarimetric Channel (requirements/2)

The requirement for the polarimetric channel is to measure the polarized brightness with an accuracy better than 1%.

Polarized Brightness observations and evaluation (the eclipse case/1)

Using a polarimeter as the METIS one, a single frame can be write as:

 $m_i = g(I \quad Q\cos\delta_i \quad U\sin\delta_i) + b$

Where *g* is the efficiency of the system (containing the transmission of the polarimeter and the quantum efficiency of the detector), *I*, *Q* and *U* are the Stokes parameters, δ_i are the LCVR retardances and *b* is the detector bias and dark current. From the linear combination of 4 frames (*m*_i) acquired at different values of δ is possible to evaluate *I*,*Q*, *U* and the *pB*:

$$pB = \sqrt{Q^2 + U^2}$$

Polarized Brightness observations and evaluation (the eclipse case/2) 2006 March 29 total solar eclipse (observed with E-Kpol)

METIS 2nd Science and Technical Meeting – Torino, 12-13 December 2012

Polarized Brightness observations and evaluation (the eclipse case/3)

2006 March 29 total solar eclipse pB compared with LASCO C2 results

Polarized Brightness observations and evaluation (the eclipse case/4)

2006 March 29 total solar eclipse polarization

Polarization (Hole and Streamer)

Polarized Brightness observations and evaluation (the eclipse case/5)

How to evaluate electron density

Starting from the pB and interpolating this data for each direction using a function:

$$pB\left(\frac{\rho}{R_{\odot}}\right) = c_0 \left(\frac{\rho}{R_{\odot}}\right)^{-d_0} + c_1 \left(\frac{\rho}{R_{\odot}}\right)^{-d_1}$$

is possible to evaluate (in the approximation of spherical symmetry) the profile of electronic density (N_e) (Minnaert, 1930; Van de Hulst, 1950; Billings, 1966):

$$N_e\left(\frac{r}{R_{\odot}}\right) = \frac{a_0\left(\frac{r}{R_{\odot}}\right)^{-b_0} + a_1\left(\frac{r}{R_{\odot}}\right)^{-b_1}}{\left[(1-u)A(r) + uB(r)\right]}$$

Where *u* is the linear coefficient of limb-darkening, A(r) and B(r) are geometrical factors, $b_i = d_i + 1$ and $a_i = \frac{c_i}{KR_{\odot}\sqrt{\pi}} \frac{\Gamma(\frac{b_i+3}{2})}{\Gamma(\frac{b_i+2}{2})}$.

METIS 2nd Science and Technical Meeting – Torino, 12-13 December 2012

Polarized Brightness observations and evaluation (the eclipse case/6)

2006 March 29 total solar eclipse electron density compared with LASCO C2 results

Capobianco et al. Proc. of SPIE 845040(2012)

The images alignment procedure (1)

Using geometrical properties of the K-corona polarized radiation (pB vector direction tangential to the occulter edge)

$$S = \begin{pmatrix} I \\ -pB\cos 2\alpha \\ -pB\sin 2\alpha \\ 0 \end{pmatrix} \qquad \frac{m_i^{bg} = I - pB\cos(2\alpha - \delta_i)}{\frac{m_i^{bg} - I}{pB} = -\cos(2\alpha - \delta_i)}$$

METIS 2nd Science and Technical Meeting – Torino, 12-13 December 2012

The images alignment procedure (2)

$$m_i^{bg} = I - pB\cos(2\alpha - \delta_i)$$

$$\frac{m_i^{bg} - I}{pB} = -\cos(2\alpha - \delta_i)$$

Fitting with the function (3 param.)

 $y = P_0 - P_1 \cos(2x - P_2)$

FIT IS NOT GOOD

The center of the sun has been supposed corresponding to the center of the moon (occulter)

METIS 2nd Science and Technical Meeting – Torino, 12-13 December 2012

INAF

The images alignment procedure (4)

$$\frac{m_i^{bg} - I}{pB} = -\cos\left\{2\beta - 2\arcsin\left[\frac{r_0\sin(\theta - \beta)}{\sqrt{r_0^2 + r'^2 - 2r_0r'\cos(\theta - \beta)}}\right] - \delta_i\right\}$$

$$y = P_0 - P_1 \cos\left\{2x - 2 \arcsin\left[\frac{P_2 \sin(P_4 - x)}{\sqrt{P_2^2 + P_3^2 - 2P_2 P_3 \cos(P_4 - x)}}\right] - P_5\right\}$$

This procedure allow us also to check the applied retardances

METIS 2nd Science and Technical Meeting – Torino, 12-13 December 2012

The images alignment procedure (5)

Summarizing the alignment procedure include:

- A raw estimation of the moon center and pB
- The evaluation of the sun center (using 5 parameters fit)

- The check of the applied retardances using the 3 parameters fit using the sun center coordinates

A 2006 eclipse frame fit a METIS frame?

	EKPol		METIS		
Frame size	1024x1024 px	Rebinning	2048x2048 px		
Frame depth	16 bit		16 bit		
Plate scale	8.6 arcsec/px		10.3 arcsec/px		
Field of view	+/- 4 Rsun	Rescaling	+/- 3 Rsun (@ 0.3 AU)		

The two instruments have a compatible plate scale and the same frame depth. A rebinning and a rescaling operations are required!!!

Conclusions

The eclipse images are scientifically relevant and give out a good confidence in the data acquisition and data analysis procedures;

The eclipse images (after rebinning and rescaling operations) are representative of the METIS polarized brightness images and can be used as Lena image for test (i.e. tests of the image compression algorithms);

The eclipse images allow us to check and verify the full data analysis pipeline (VL);

The heritage of the alignment procedure of the eclipse images should be usefull if METIS sun sensor is descoped