

Research Centre for Special Optics and Optoelectronic Systems

METIS coronagraph

Progress on mirrors M1 and M2

toptec@ipp.cas.cz www.toptec.eu

Selection of the material

SiSiC – hard material needs special technology for cutting and grinding

toptec@ipp.cas.cz www.toptec.eu

Material properties

SiSiC

- Youngs modulus = 380MPa
- Poissons constant = 0.17
- Density = 3.07 g cm^{-3}
- Bending strength = 340MPa

ZERODUR

- Youngs modulus = 90MPa
- Poissons constant = 0.24
- Density = 2.53 g cm^{-3}
 - Bending strength = 109MPa

NSF-15

- Youngs modulus = 90MPa
- Poissons constant = 0.24
- Density = 2.92 g cm-3
- Bending strength = 20MPa?

toptec@ipp.cas.cz www.toptec.eu

How to manufacture

Silicon-infiltrated silicon carbide
(SiSiC) - substrate

+ Si coating (self organized structure)

20 µ layer for ion-beam figuring/polishing

Manufacturing process I

Dry Pressing Green Machining

Manufacturing process II

Superpolishing

≈ 10-20 µ

Sufficient for most of applications But not for UV and EUV

Measurement

Goal of 2Å microroughness

toptec@ipp.cas.cz www.toptec.eu

Numerical Tests - parameters

- FEM Abaqus, MSC. Nastran
- Topology optimization ATOM (Dassault Systèmes)
- Structured hexahedral mesh (60 000 elements)
- Linear material model, model (E, flexular strength) for SiSiC validated by banding test

toptec@ipp.cas.cz www.toptec.eu

Numerical Tests

- 1. Modal analysis
- 2. Deformation of the mirror under its own weight (axial and vertical load)
- 3. Shock load 60g
- 4. Stiffness (perpendicular to mirror plane)
- 5. Random load, sine load, shock load

Variants – design + material

				Loadcase 1	Loado	case 2	Loadcase 3	Loadc	ase 4
Var.	Design	Material	Mass	1st Eigenfrq.	Displacement z		Max. Eq. Stress	Stiffnors	Stiffness/
					g_y	g_z	60g(z)	Sumess	Mass
			[g]	[Hz]	[nm]	[nm]	[MPa]	[kN mm ⁻¹]	[N (mm g) ⁻¹]
а	D1	SiSiC	340	950	69	42	1.8	24	71
b	D2	SiSiC	520	1 384	51	43	2.3	33	64
С	D3	SiSiC	420	1 295	49	35	2.5	50	119
d	D4	SiSiC	520	1 378	43	35	2.6	51	98
е	D4	Zerodur	429	742	145	121	1.9	12	28
f	D4	NSF-15	495	688	173	143	2.2	12	24
g	1/6	NSF-15	3 003	2 080	83	46	0.8	255	85
h	1/8	NSF-15	2 057	1 493	123	83	1.4	93	45

Results LC 1 and 2

toptec@ipp.cas.cz www.toptec.eu

Results LC 3 and 4

toptec@ipp.cas.cz www.toptec.eu

M1 and M2 baseplates

- Gringing and polishing tests on SiSiC sample baseplates
- Polishing test (not IBF) on amorphous Si block proved 6 Å microroughness

WL interferometer to test the surface quality ¹³

Research Centre for Special Optics and Optoelectronic Systems

toptec@ipp.cas.cz www.toptec.eu

M1 and M2 baseplates II

Currently we have ordered 1:1 scale sample base-plates which are being produced by CERAMTECH (USA, CZ)

C/D phases

final tests & manufacturing

Polishing test

Regionální centrum speciální optiky a optoelektronických systémů

Research Centre for Special Optics and Optoelectronic Systems

toptec@ipp.cas.cz www.toptec.eu We are ready for polishing tests on 1:1 scale samples:

- Polishing of the substrate
- Si layer CVD (chemical vapour deposition) on a baseplate
- polishing of the Si layer
- IBF (Ion beam finishing) to reach the required microroughness

Research Centre for Special Optics and Optoelectronic Systems

toptec@ipp.cas.cz www.toptec.eu

ESA-PRODEX contracts

Czech contribution to METIS is covered by PRODEX (fully confirmed)

- Czech PRODEX confirmed the phase B in June 2010, including the budget
- since then no action at ESTEC office !
- negotiations with ESA-PRODEX office only since June 2012
- electronic version of signed contract delivered to TOPTEC on 29/11/2012
- Czech PRODEX confirmed the phase C/D in 2012
- Negotiations with ESA-PRODEX office to prepare contract with TOPTEC