



#### **Occulter optimization tests at OPSys**

#### Federico Landini



INAF – Osservatorio Astrofisico di Arcetri



#### Outline



- METIS and its occulting system
- Theoretical estimate of the diffraction pattern on the primary mirror plane
- Occulter optimization concept
- The prototypes:
  - BOA (Breadboard of the Occulting Assembly)
  - ANACONDA (AN Alternative COnfiguration for the Occulting Native Design Assembly)
- Preliminary results from LAM measurements
- Set-up modifications to be introduced at the OPSys facility
- Preliminary activity schedule

December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting



# METIS occulting system design





December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting





- smaller external occulter diameter
- thermal load on M0 greatly reduced
- on-axis telescope configuration
- more compact, cylindrical structure



December 13<sup>th</sup> , Torino METIS II Science and Technical Meeting Federico Landini



## **Theoretical diffraction estimate**







#### IEO optimization concept



The experience of past space-borne solar coronagraphs teaches that an optimization of the geometry of the occulter is needed in order to lower the stray light level behind the occulter itself.



December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting





- The boom is the most critical interface, subject to likely structural modifications throughout the mission's phases
- Two prototypes in order to span the widest possible range of geometries:
- BOA (Breadboard of the Occulting Assembly)
- ANACONDA (AN Alternative COnfiguration for the Occulting Native Design Assembly)

#### **BOA vs ANACONDA**

M0 support and alignment

agenzia spaziale italiana

BOA



stage

December 13<sup>th</sup> , Torino Federico Landini **METIS II Science and Technical Meeting** 



# **Common characteristics**

ANACONDA

- Vanes can be easily implemented and removed
- The front part includes a sliding adjusted hole H7/g6 to host several types of cone different angles and lengths)
  without affecting the alignment
- The back part is equipped with a motorized translation stage " carrying a calibrated photodiode (CPD) that scans one diameter of M1
- The mechanics that is used to hold and align M0 is the same



Federico Landini

M0 support and



Translation stage





#### Some pictures





December 13<sup>th</sup> , Torino METIS II Science and Technical Meeting





- A first measurements campaign has been run at the Laboratoire d'Astrophysique de Marseille (LAM), France, in front of a solar disk simulator (~32 arcmin→ ~1 AU) and in a class 100 clean room.
- The simple knife edge aperture was taken as a reference.
- All the measurements have been normalized to the unobstructed solar disk light from the solar simulator.

# The whole view





December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting

agenzia spaziale italiana

# The whole view



December 13<sup>th</sup> , Torino METIS II Science and Technical Meeting









- Only knife edge apertures and inverted cone solutions have been compared.
- In place of M0 a Vel Black<sup>®</sup> (Esli) coating has been applied.
- All the measurements were performed with a fixed Sun dimension.



 M0 has been resized to reproduce with the LAM Sun the same over-occultation of METIS at perihelion.

December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting



#### LAM tests peculiarities





December 13<sup>th</sup> , Torino METIS II Science and Technical Meeting









December 13<sup>th</sup> , Torino

**METIS II Science and Technical Meeting** 

# Double peak behaviour

agenzia spaziale italiana



December 13<sup>th</sup> , Torino METIS II Science and Technical Meeting Federico Landini



#### Fixed length – all angles





December 13th , Torino

**METIS II Science and Technical Meeting** 









December 13<sup>th</sup> , Torino

**METIS II Science and Technical Meeting** 



## **BOA vs ANACONDA**



Federico Landini

December 13<sup>th</sup> , Torino

**METIS II Science and Technical Meeting** 









December 13<sup>th</sup> , Torino

**METIS II Science and Technical Meeting** 









December 13<sup>th</sup> , Torino METIS II Science and Technical Meeting





- As expected, the optimization of the occulter reduces the stray light level on the primary mirror plane.
- The cone angle has a great impact on the performance.
- The cone length has not such a big impact.
- With the cone, no special requirements are needed for the outer edge (Landini et al., Ap Opt. 50, 2011).
- The boom diameter must be designed as large as the S/C thermal shield constraints may allow
- An optimized set of vanes is absolutely necessary.





- The OPSys (Optical Payload Systems) facility in Torino (Italy) can dynamically simulate a solar disk of bigger dimensions than the LAM one.
- Experiments can be carried on also in vacuum (to investigate the UV part of the spectrum).



December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting





- Different roughnesses and coatings will be applied to the cone surface.
- A different (though in principle less effective) optimization concept will be tested as well: the serrated edge aperture.
- Diaphragms are being manufactured from a 0.12 thick mm steel plate
- A real mirror will be installed
- in place of Vel Black<sup>®</sup>.



December 13<sup>th</sup>, Torino METIS II Science and Technical Meeting





- Alignment procedure definition (1.5 weeks)
- LAM tests repetition and results comparison: Sun at 1 AU, VB on M0 (1.5 weeks) + data analysis (0.5 weeks)
- Same set-up, with mirror instead of VB (1 week)
- Same set-up, with Sun at 0.8 AU (0.5 week)
- Solar disk dimension change (1 week)
- Tests repetition: Sun at 0.58 AU, mirror on M0 (1.5 weeks)
- Tests by off-pointing the BOA (0.5 week)