Jupiter Icy Moons Explorer (JUICE): exploring the emergence of habitable worlds around giant planets

Federico Tosi*

on behalf of the JUICE Science Study Team

*INAF-IAPS, Rome

Istituto Nazionale di Astrofisica (INAF), Sede centrale, Roma, 30 ottobre 2012

JUICE Science Themes

- Emergence of habitable worlds around gas giants
- Jupiter system as an archetype for gas giants

Outline

- Overview of over-arching questions
- The science of JUICE
- Conclusion

JUICE concept

- European-led mission to the Jovian system
- First orbiter of an icy moon
- JGO/Laplace scenario with two Europa flybys and a moderateinclination phase at Jupiter
- JGO model payload is fully compatible with JUICE objectives

From the Jupiter system to extrasolar planetary systems

JUICE

Waterworlds and giant planets Habitable worlds **Astrophysics Connection** Deep habitats Surface habitats Mass of star relative to Sun Earth Venus **SNOW LINE** Deep habitats Radius of orbit relative to Earth's

Cosmic Vision: The quest for evidence of life in the Solar System must begin with an understanding of what makes a planet habitable

Ganymede and Europa are the archetypes of two classes of habitable worlds

Three large icy moons to explore

Ganymede

- Largest satellite in the solar system
- A deep ocean
- Internal dynamo and an induced magnetic field unique
- Richest crater morphologies
- Archetype of waterworlds
- Best example of liquid environment trapped between icy layers

Callisto

- Best place to study the impactor history
- Differentiation still an enigma
- Only known example of non active but ocean-bearing world
- The witness of early ages

Europa

- A deep ocean
- An active world?
- Best example of liquid environment in contact with silicates

Exploration of the Jupiter system

JUICE

The biggest planet, the biggest magnetosphere, and a mini solar system

Jupiter

- Archetype for giant planets
- Natural planetary-scale laboratory for fundamental fluid dynamics, chemistry, meteorology,...
- Window into the formational history of our planetary system

Magnetosphere

- Largest object in our Solar System
- Biggest particle accelerator in the Solar System
- Unveil global dynamics of an astrophysical object

Coupling processes Hydrodynamic coupling Gravitational coupling Electromagnetic coupling

Satellite system

Laplace resonance

- Tidal forces: Laplace resonance
- Electromagnetic interactions to magnetosphere and upper atmosphere of Jupiter

Exploration of the habitable zone

Characterise Ganymede as a planetary object and possible habitat

JUICE OBJECTIVES

- Characterise the ice shell, the extent of the ocean and its relation to the deeper interior
- Determine global composition, distribution and evolution of surface materials
- Understand the formation of surface features and search for past and present activity
- Characterise the local environment and its interaction with the Jovian magnetosphere

Ganymede	Δ		Δ	ΔΜ	$\triangle \langle$
Year	2030	2031		2032	2033

2. Composition, distribution, and evolution of surface materials

Year

2030

2032

2033

2031

3. Formation of surface features and search for past and present activity

Measurements

- Global imaging at 200-400 m/px
- High Resolution target areas
- Topography/ morphology
- Subsurface exploration
- Compositional relationships

Instrument Packages

- Imaging
- Spectrometers
- Sounders

Ganymede	Δ	\triangle \triangle \triangle	Δ	Δ	ΔM	Δ		
Year	2030	20.	31		2032		2033	

4. Characterise the local environment

- In situ Fields and Particles
- Imaging
- Spectroscopy
- Radio science

Ganymede	\triangle \triangle \triangle \triangle	Δ Δ	$\triangle \triangle \triangle \triangle \triangle$	
Year	2030	2031	2032	2033

Exploration of the habitable zone

Explore Europa recently active zones

JUICE will tell us:

- If liquid reservoirs exist
- If the salinity is comparable to our oceans
- How thick the crust is in chaos regions
- If the moon is still active
- Potentially where we could land in the future

Europa					
Year	2030	2031	2032	2033	

Exploration of the habitable zone

Study Callisto as a remnant of the early Jovian system

JUICE OBJECTIVES

- Characterise the outer shells, including the ocean
- Determine the composition of the non-water ice material
- Study the past activity including the differentiation processes

Callisto		Δ Δ ΔΥΥΥΥΥΥΥΥ	Δ	
Year	2030	2031	2032	2033

Explore the Jupiter system as an archetype for gas giants

Characterise the Jovian atmosphere

JUICE OBJECTIVES

- Characterise the atmospheric dynamics and circulation
- Characterise the atmospheric composition and chemistry
- Characterise the atmospheric vertical structure

Perijoves	\bigvee \triangle \triangle \triangle	///////////////////////////////////////		
Year	2030	2031	2032	2033

Characterise the Jovian atmosphere

3. Evaluate the variability, on multiple timescales from hours to years, of the processes transporting energy, momentum and material from place to place.

Ultra-Violet (UVIS):

Stellar occultations, highaltitude hazes, chemistry, ionosphere/thermosphere

Near-IR (VIRHIS):

5-10 nm resolution; cloud studies; resolve NH3/H2O ice features; extend beyond 5 µm thermal emission

Sub-mm (SWI):

Middle atmosphere, stratospheric winds & waves, temperatures, H₂O and trace species

Visible Camera (HRC/WAC): Narrow filters to probe strong CH₄ absorptions, cloud structure, wind tracking, lightning studies, cloud colouration

Advanced instrumentation for global & regional observations with broad spectral coverage from UV to radio wavelengths

Radio science (JRST-USO) Temperature & density sounding; e- density profiles; tropospheric NH3, H2S, PH3 opacity at depth

Perijoves	JO	///////////////////////////////////////		
Year	2030	2031	2032	2033

Explore the Jupiter system as an archetype for gas giants

Explore the Jovian magnetosphere

JUICE objectives

- Study the dynamics of magnetosphere in and out of the magnetodisc
- Determine the electrodynamic coupling between the planet and the satellites
- Assess global and continuous acceleration of particles

Perijoves		Δ Δ ΔΔΛ////ΔΛΛ///ΔΛΛ//ΔΛΛ/ΔΛ		
Year	2030	2031	2032	2033

Conclusions

Internat. Interest The Firsts Cosmic Vision Impact Timeliness

- Orbiter of an icy moon
- European led mission to outer solar system
- Subsurface exploration of icy moons
- Opportunity to characterise the waterworlds class of planetary bodies
- Opportunity to completely explore Ganymede's unique combination of magnetic fields
- Prolonged study of mid-high latitudes of Jupiter's magnetosphere
- Direct measurements of atmospheric circulation in Jupiter's middle atmosphere

Conclusions JUICE

Internat. Interest

The Firsts

Cosmic Vision

Impact

Timeliness

Cosmic Vision Themes

- What are the conditions for planet formation and emergence of life?
- How does the Solar System work?

JUICE Science Themes

- Emergence of habitable worlds around gas giants
- Jupiter system as an archetype for gas giants

Community interests

Atmospheric sciences

Geology and geophysics

Plasma and Magnetospheric physics

Chemistry

Planetary system dynamics and evolution

Origin of the solar system and exoplanetary systems

Habitability in the solar system and beyond

