

MARCOPOLO-R

Near Earth Asteroid Sample Return Mission

Cosmic Vision ESA – M3

Science Study Team (SST): M.A. Barucci (F) (Chair) P. Michel (F) J.R. Brucato (I) H. Böhnhardt (D) E. Dotto (I) P. Ehrenfreund (NL) I.A. Franchi (UK) S.F. Green (UK) L.M. Lara (E) B. Marty (F)

D. Koschny (ESA - Study Scientist) D. Agnolon (ESA- Study Manager) J. Romstedt (ESA - Study Payload Manager)

Selected in Feb. 2011 for assessment study phase Final selection: Dec. 2013

Elisabetta Dotto – INAF-OAR

Giornata in memoria di Angioletta Coradini

Roma 30/10/2012

Tracing the origins ...

Small bodies of the Solar System are believed to be the remnants - either fragments or "survivors"- of the swarm of planetesimals from which the planets were formed.

In contrast to the planets, which have experienced major alteration during their history, most asteroids and (dormant) comets, due to their small sizes, are believed to have retained a record of the original composition of our solar system's protoplanetary disk.

Abundant within the inner solar system, small bodies have played a fundamental role as impactors of Earth during the so called Late Heavy Bombardment.

Impacts had both beneficial and destructive effects on the evolution of planetary biospheres

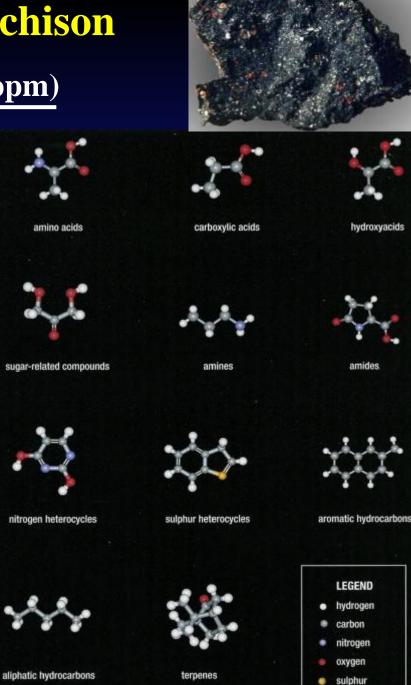
During the late phase of Earth accretion (Walsh et al. 2011) 3.9 Gyr ago: Late Heavy bombardment LHB

Formation of Earth	Stable hydrosphere	Prebiotic chemistry	Pre-RNA world	RNA world	First DNA/ protein life	Diversification of life
4.5	4.2	4.2-4.0	~4.0	~3.8	~3.6	3.6–present

Current exobiological scenarios for the origin of life invoke the exogenous delivery of organic matter to the early Earth

The planets of the inner solar system experienced an intense influx of organic-rich material for several hundred million years after they formed.

The earliest evidence for life on Earth coincides with the decline of this bombardment.

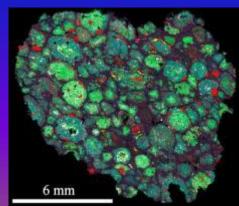

Many biologically important molecules are present in the organic materials.

Organic compounds in Murchison

.5

Compound Class Concentration(ppm)

CO ₂ CO ²		106
CO		0.06
CH ₄ NH ₃		0.14
NH ₃		19
Aliphatic hyd	rocarbons	12-35
Aromatic hyd	rocarbons	15-28
Amino Acids		60
Monocarboxy	lic acids	332
Dicarboxylic a	acids	26
α-hydroxycar	boxylic acids	14
Polyols (sugar	-related)	~24
Basic N-heter	ocycles	0.05-0
Purines		1.2
Pyrimidines		0.06
Amines		8
Urea		25
Benzothiophe	nes	0.3
Alcohols		11
Aldehydes		11
Ketones	Sephton 2002	16


Laboratory investigation of returned samples

High spatial resolution and analytical precision are needed:

- High precision analyses including trace element abundances to ppb levels and isotopic ratios approaching ppm levels of precision
- > High spatial resolution a few microns or less
- Requires large, complex instruments e.g. high mass resolution instruments (large magnets, high voltage), bright sources (e.g. Synchrotron) and usually requires multi-approach studies

MarcoPolo-R addresses a wide range of objectives

Stars

Stellar nucleosynthesis Nature of stellar condensate grains

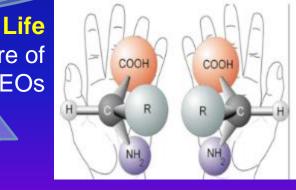
> The Interstellar Medium IS grains, mantles & organics

The proto-solar nebula Accretion disk environment,

processes and timescales

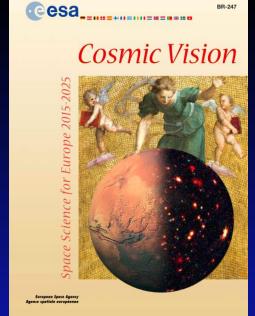
Planetary formation

Inner Solar System Disk & planetesimal properties at the time of planet formation


Asteroids Accretion history, alteration processes, impact events,

regolith

Nature of organics in NEOs


The Earth Impact hazard Evolution of life on Earth

Scientific Objectives

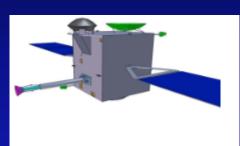
- What are the conditions for planet formation and the emergence of life?
- How does the Solar System work?

MarcoPolo-R will address:

- 1. The processes occurring in the early solar system and accompanying planet formation;
- 2. The physical properties and evolution of the building blocks of terrestrial planets;
- 3. Whether primitive NEA contain presolar grains yet unknown;
- 4. The nature and the origin of the organics in primitive asteroids and how they shed light on the origin of molecules necessary for life.

Baseline mission

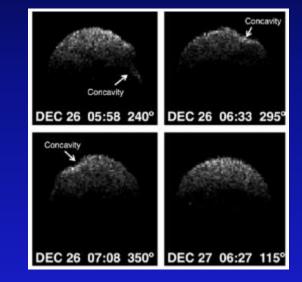
Official Baseline Target: 2008 EV5 (4 years mission) Launch window: 2022/2024/Soyuz Back-up target: 1996 FG3, 3-6 months stay time


Single primary spacecraft, carrying:

- Earth Re-rentry Capsule (ERC)
- Sample acquisition and transfer system (SAS)

Touch and go sampling mechanisms (non-exhaustive list):

- Brush or cutting wheels
- Corers
- Gaseous transport devices

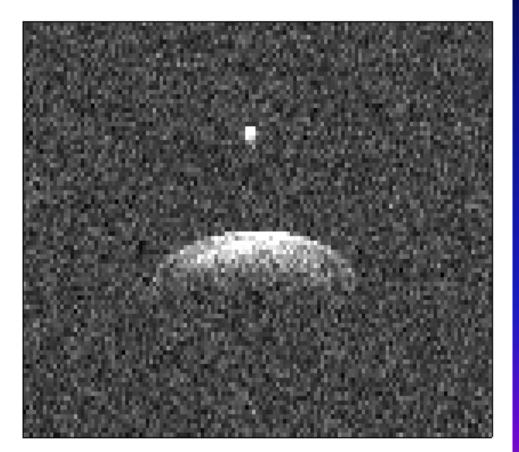

Sample device should collect a minimum of 100 g sample (2 ESA dedicated study starting in July 2012 +1 by NASA)

Official Baseline Target: 2008 EV5 Potential hazardous asteroid

- Spectral type: belongs to the C complex (Reddy et al. 2012)
- Size and shape from radar: 400 +/- 50 meters oblate spheroid (concavity 150m, Busch et al. 2011)
- Rot Period = $3.725 \pm 0.001h$ (retrograde)
- Pole -- Ecliptic: 180° , -84° \pm 10°
- Albedo: 0.12±0.04 (Bush et al. 2011)

Spectra have a weak 0.48-µm feature and an overall blue slope consistent with CI (Orgueil-probably origin from comets)

Advantage: allows a very short mission duration (sample return in 4 years)

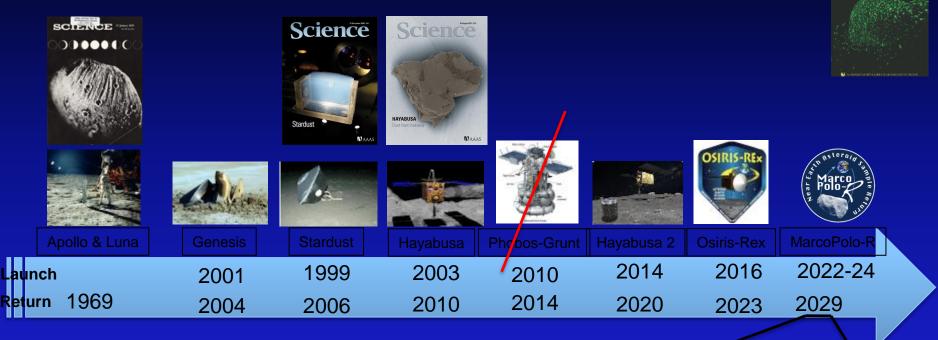


- After a first assessment, the precise mission analysis is currently on-going at ESA-ESOC and should be shortly available (figures below not yet finalized)
 - Primary launch opportunities:
 - Launch in December 2022, 4.5-year duration, arrival at the asteroid ~ January 2025, return to Earth in June 2027
 - Launch in December 2023, 4.5 year duration, arrival at the asteroid ~ December 2025, return to Earth in June 2028
 - Backup opportunity:
 - Launch in December 2024, 6.5 year duration, arrival at the asteroid ~ November 2027

Back-up: (175706) 1996FG3 Evidence for an equatorial ridge

Doppler frequency (0.24 Hz/column) -->

Albedo $p_v = 0.029 + 0.026 - 0.012$ Diameter 1.9 + 0.55 - 0.42 km Secondary Diameter ~ 0.5 km Binary system: Primary P = 3.5942 + 0.0001 b


P = 3.5942 + 0.0001 hSecondary P = 16.14 h

Pole direction $\lambda = 242 + 96$, $\beta = -84 + 14 - 5 \text{ deg}$

L. Benner, JPL Courtesy

Programmatic **International Framework** Science

Assessment Phase

End

5897.2013

Industrial Study

Start

Study

Feb.2012

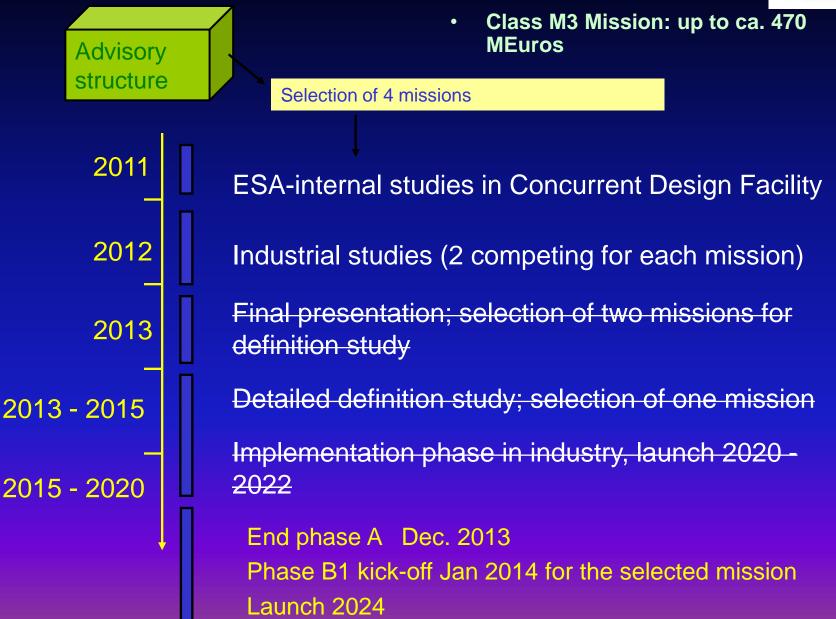
Industrial

0

Jan.2012

CDF

8 Nov. 2017 2011


EUROPE needs to demostrate SR capability

MarcoPolo-R (ESA)

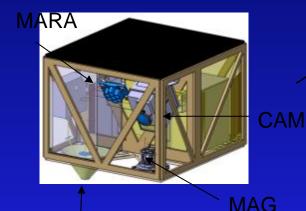
- peculiar C-type
- different sampling

Schedule

MarcoPolo-R

Baseline Payload

	Spatial resolution			
	VIS imaging	VIS/IR spectrometer	Mid-IR instrument	
Global characterisation	Order of dm	Order of m	Order of 10 m	
Local characterisation	Order of mm	Order of dm	Order of dm	
Context measurements	Hundred µm	-	-	



	Wide Angle Camera (WAC)	Narrow Angle Camera (NAC)	Close-Up Camera (CUC)	Visible Near Infrared spectro. (VisNIR)	Mid-Infrared spectro. (MidIR)	Radio Science Experiment (RSE)	Neutral Particle Analyser (NPA)
Mass [kg]	2.0	8.92	0.82	3.6	3.0	Contained in the resources of the radio subsystem	2.2
Volume [mm]	237x172x115	520x380x197 250x170x120	364x78x68	270x110x90 150x180x82	160x220x370	Contained in the resources of the radio subsystem	200x200x100
Power [W] average	11.5	13.5	12.5	18	2		11
Data volume single measur.	67 Mbit	67 Mbit	67 Mbit	0.45 Mbit	360 Mbit	Data recorded in the ground station in real time	0.72 kbit
Heritage	Rosetta, ExoMars, ISS, Bepi Colombo	Rosetta, ExoMars, ISS, Bepi Colombo	Rosetta, ExoMars, ISS, Micro- rover (ESA)	Mars/Venus Express, Rosetta	SMT, TechDemSat		Bepi Colombo

Optional payloads: lander with payloads, laser altimeter, seismic experiment

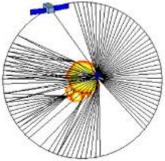
MarcoPolo-R Proposed Lander Packages

On the basis of MASCOT (a ~10kg lander for the Hayabusa 2 mission), landers with various instrument complements are studied as optional payload for MP-R

MAPOSSI

- LIBS - APX

- -Thermal Mapper
- Mößbauer Spectrometer,
- IR-spectrometer (MicrOmega)
- Camera
- optional elements



LIBS for ExoMars © DLR

> MicrOmega for MASCOT © IAS

- Radar Tomographer
- Camera
- optional elements

Concept of Radar Tomogapher Image: IPAG

µOmega

MASCOT

ESA - Technology

In total, ESA is investing close to 4.5M€

in activities directly relating to MP-R and other technologies developed in other programmes which are indirectly related to MP-R

in addition to all national activities such as the "instrument" studies initiated in the frame of the Declaration of Interest (~ 20 nationally-funded studies are ongoing).

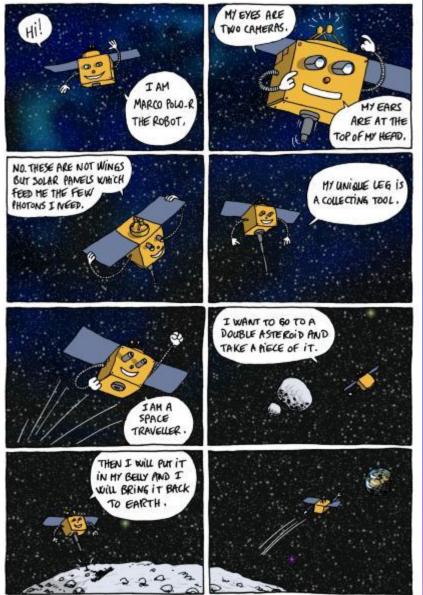
NASA financed (Aug.14, 2012) 300 000 \$ to study the Sample mechanism for MP-R

ESA UNCLASSIFIED – Proprietary Information

- more than one sample return mission
- an European NEO return mission

MP-R mission will

- ✓ provide a unique window into the distant past
- allow scientists to unravel mysteries surrounding the birth and evolution of the solar system
- involve a large community, in a wide range of disciplines


 Planetology
 Astrobiology
 Nucleosynthesis
 Cosmochemistry

 retain samples for future advances
 through a Curation and Distribution Facility
- demonstrate key capabilities for any sample return mission
- ✓ generate tremendous public interest


David Hardy

An easy case for outreach

S. CANDOR 03.12

SCENARIO: A. BARUCCI - DESSIN/COULEUR : S. CNUDDE 04.12

MarcoPolo-R Mission http://www.oca.eu/MarcoPolo-R/

European Community Supporters: More than 600 scientists (October 2012), 25 countries (more than 120 in Italy)

International collaboration is open

MarcoPolo-R is on Faceboook:

http://www.facebook.com/pages/MarcoPolo-R-Space-Mission/40232049502