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Herschel and the study of the dusty and gaseous Universe

Herschel has opened a whole new avenue to the study of the dusty
Universe thanks to its improved sensitivity and angular resolution
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» ~30-50% of the total mass of metals » primary ingredient for SF
» metal content determined by past SFH, gas " consistent fraction of the total baryonic
inflow and outflow galaxy mass
= affects and drives SF " gas abundance compared to the stellar
m affects detectability of galaxies abundance gives an idea of the evolutionary
= proxy of gas content (with assumptions on state of the galaxy
the dust/gas ratio) (e.g., Eales+10,+12, Leroy+11, » relatively difficult to measure for large

Magdis+12, Scoville+12,+14) samples of galaxies



Herschel and the study of the gaseous Universe

Gas mass from
the dusk mass
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Dust—to—Gas Ratio (in Galactic Units)

- Photo-z good enough

- Fast method: can quickly deliver gas masses

for thousands of galaxies

James+02; Draine+07; Leroy+11; Smith+12; Corbelli

+12; Sandstrom+13; Zafar & Watson 13; Chen+13;
Remy-Ruyer+14
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- At high-z generally high-] CO transitions
observed = need to correct for excitation
- Depend on galaxy type (?)

- Needs accurate spec-z
- Time demanding

Bolatto+13; Genzel+12; Leroy+11; Papadopulos+12;
Sandstrom~+13; Lee+14,; Dannerbaner+09; Ivison+11;
Carilli & Walter 13



Galaxy scaling relations

Aim: investigating the scaling relations among galaxy
fundamental physical parameters

e Star Formation Rate

Key physical properties to understand
galaxy evolution,
linked with each other through the

processes responsible for mass build-up

® stellar mass
* dust mass

® gas mass

and their evolution across cosmic time.



Sample and basic ingredients of the analysis

Large statistics: GOODS-S + GOODS-N + COSMOS

" multiwavelength photometry from X-rays to FIR

» Herschel data from PEP (PACS survey, Lutz+11) and HerMES (SPIRE
survey, Oliver+10)

" zspec or photo—z

Basic ingredients:
* Star Formation Rate = from 24 um observations

* stellar mass = nearUV—to—nearIR multi-A photometry 005<2<25
. z < 2.

Selections: S/N > 10 in K band + AGNs removed + < 9.75 <log M <12
-0.75 <log SFR < 3

~30000 galaxies in the final sample

Average fluxes in Herschel bands by stacking on the maps at the positions of sources with
similar properties (redshift, M, SFR) P

<z>=0.81
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* dust mass =2 fit Herschel fluxes to Draine & Li 2007 model L
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* gas mass = conversion through the dust/gas ratio (metallicity , _
trom the FMR of Mannucci+10) G IR SO s
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The “dust-based” integrated Schmidt-Kennicutt law
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* consistent with a single power law ot slope 1.5 (original S-K slope, Kennicutt+98)
* broadly consistent with previous CO-based works for the majority of galaxies



PSS+

log SFE = log SFR/Mg, [yr™']
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The evolution of the Star Formation Efficiency

log SFR [

Mo/ yr]
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Higher star formation
efficiency at high redshift:

- partly consequence of
S-K slope>1 together
with higher SFR at high-z

- partly real evolution (?)



The evolution of the gas fraction
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and increases with SFR
and SFR (at least out to z~2.5)

. fgas decreases with M
* no redshift evolution at fixed M

star
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The fundamental £, -M_ -SFR relation

star

log SFR [My/yr]

* redshift—independent
(2 fundamental)

3D relation =2 the
physics of SF 1s
independent of redshift

* does not imply lack of

evolution: the majority of

galaxies populate
different regions of this
surface at different

epochs




The evolution of the gas fraction in Main Sequence galaxies
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Evidence of downsizing: massive galaxies have consumed
their gas earlier and more rapidly than low mass galaxies



Summary

U Dust is a powerful gas proxy
FIR surveys allow to extend gas studies to much larger samples of galaxies, save much
time and get rid of many systematics

log SFR [My/yr]

d The physics of star formation is independent of T
redshift (at least out to z~2.5) ba
At fixed M. and SER, gas and dust masses are consistent with
no evolution with redshift (within uncertainties) g ol
BUT the global gas and dust content does evolve since the
majority of galaxies populate different regions of the
fundamental f,,-M,, -SFR relation across cosmic epochs

star

[t'e not the end of the story...



Limitations of the analysis

Confirmation of the redshift invariance of the fundamental f,, —M,, —SFR relation:

1. crucially depends on the uncertainties
* SFR based on 24um
* Stacking i
* Gas metallicity inferred assuming the FMR

2. would benefit from extension of the dynamical range (mostly in z and SFR)

log SFR [My/yr]
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* Basically limited by Spitzer (SFR from 24 um) and
Herschel sensitivity

* (and area not large enough)
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SAFARI MW and LW bands free of contamination from PAH
features (out to z~3) =2 reduce the scatter and systematics in the
SFRs by a factor of 2—4 (+ 2 orders of magnitude deeper wrt

I0gio (Le/Lo)
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Herschel) 0

direct measure gas metallicity from far-IR lines (unatfected by dust i

extinction, e.g. Nagao+11) with SAFARI = 10-20% reduction in
uncertainties + avoid possible systematics

Metallicity (Z/Z))

reduce the scatter in the dust/gas ratio vs gas metallicity relation by

analysing dependences on physical conditions Es

—

nearly 2 orders of magnitude deeper with a photometric band or
than Spitzer and Herschel = can

deal with individual detections

low res spectrum +
combination with
submillimeter telescopes (or a
— FIR imager on-board SPICA)

allows extension to higher redshift
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Large room for improvement with SPICA
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