The birth environment of the first stars and black holes

Raffaella Schneider INAF/Osservatorio Astronomico di Roma

Italian SPICA workshop 4 – 5 April 2016

first (Pop III) star formation: in H₂-cooling mini-halos M ~ 10^6 M_{sun} at 20 < z < 30 first proto-galaxies: in Lyman- α cooling halos M ~ 10^8 M_{sun} at z ~ 10^8

first (Pop III) star formation

H₂ cooling favors the formation of massive star

- ✓ collapse of $\approx 10^6 \text{ M}_{sun}$ mini-halos at $z \approx 20$
- H_2 cooling

 \prime gas cloud becomes Jeans unstable $M_{jeans}\approx 10^3~M_{sun}$

- accretion rate dM/dt \approx M_J/t_{ff} \approx c_s³/G \approx T^{3/2} (x 100 larger than @ Z_{sun})
- accreted gas mass M_★ ≅ [10 1000] M_{sun}

Omukai & Palla 2003; Bromm et al 2004; O'Shea et al. 2007; Tan & McKee 2004; McKee & Tan 2008; Hosokawa et al. 2011,2012; Hirano+14, Susa+14; Hirano+15

line luminosities from Pop III star formation in mini-halos

Kayama & Silk 2002; Ripamonti+ 2002; Mizusawa+2004

formation of a ~ 100 M_{sun} star @ z = 20

6.5 10⁴³ erg/s @ z = 20

probing high-z SF with stellar archaeology

low mass metal-poor stars are fossil remnants of early star formation: their metallicity distribution function (MDF) and surface elemental abundances encode information on their formation efficiency and on the sources of metal enrichment

Beers & Christlieb 2005; Schörck et al. 2009; Christlieb 2013; Yong+2013

probing high-z SF with stellar archaeology

low mass metal-poor stars are fossil remnants of early star formation: their metallicity distribution function (MDF) and surface elemental abundances encode information on their formation efficiency and on the sources of metal enrichment

the most iron-poor stars in the Galactic halo

8 out of the 9 currently known stars with [Fe/H] < - 4.5 are Carbon-enhanced (CEMP-no)

HE 0107-5240	[Fe/H] = -5.39	[C/Fe] = + 3.70	Christilieb+02
HE 1327–2326	[Fe/H] = -5.66	[C/Fe] = +4.26	Frebel+05
HE 0557-4840	[Fe/H] =-4.81	[C/Fe] = +1.65	Norris+07
SDSS J1069+1729	[Fe/H] = -4.73	[C/Fe] < 0.93	Caffau+11
SMSS 0313-0708	[Fe/H] < -7.30	[C/Fe] > 4.90	Keller+14
HE 0233-0343	[Fe/H] = -4.68	[C/Fe] = +3.46	Hansen+14
SDSS J1742+2531	[Fe/H] = -4.80	[C/Fe] = +3.56	Caffau+14
SDSS J1035+0641	[Fe/H] < - 5.07	[C/Fe] > 3.40	Bonifacio+15
SDSS J131326+0019	[Fe/H] = -5	[C/Fe] = + 3	Allende-Prieto +15

CEMP-no stars suggest that early metal/dust enrichment was dominated by faint SNe

de Bennassuti+2014,2016

initial mass function of Pop III stars in mini-halos

$$\Phi(m) = \frac{dN}{dm} \propto m^{\alpha - 1} exp\left(-\frac{m_{ch}}{m}\right)$$
 $m_{ch} = 2$

$$_{\rm ch}$$
 = 20 M_{sun} α = 1.35 m_{*} = [10 - 300] M_{sun}

Pop III stars forming in mini-halos have a higher probability to explode as faint SNe than PISNe

de Bennassuti+2014,2016

Early dust enrichment: yields from faint Pop III SNe

- 1. FRANEC SN explosion models (Limongi & Chieffi 2012)
- 2. Mixing and mass-cut tailored to minimize the difference between [X/Fe]_{model} and [X/Fe]_{obs} of hyper-iron poor CEMP-no stars of Galactic halo

chemical yields from the first SNe

metal and dust yields for Z = 0 non-rotating pair-instability SN models

Heger & Woosley 2002

Schneider et al. 2004; Marassi et al. 2016

Pop III that explode as PISNe are the first silicate dust producers

MIR SED from a young galaxy

Takeuchi+2003

line luminosities from Pop III/II star formation in proto-galaxies

Mizusawa+2005; Omukai+2005

• in z = 10 proto-galaxies the luminosity is dominated by H_2 lines

• the Pop III/II collapse phase in a proto-galaxy @ z = 10 is too faint to be visible

Conclusions

 ✓ SPICA may be able to differentiate between a dominant carbon or silicate dust enrichment by looking at specific grain spectral features

 $\rightarrow\,$ provide insights on the dominant dust sources at high-z and ultimately on the Pop III initial mass function

- ✓ predicted line luminosities during Pop III/II collapse phase in z > 10 mini-halos and proto-galaxies are too faint to be observed with SPICA
- → larger line luminosities expected from the cooling shells formed behind Pop III SNe (see Simona Gallerani's talk)