The search for heavily obscured AGN in the Chandra Deep Fields, and prospects for SPICA

Master Thesis of Maria Elisabetta Dalla Mura (Dipartimento di Fisica e Astronomia, Universita` di Bologna)

Cristian Vignali, Giorgio Lanzuisi, Ivan Delvecchio

Italian SPICA Workshop, Rome, April 2016

The quest for obscured AGN at different cosmic times

Obscured SMBH growth as a key phase in AGN/galaxy life

Needs for a complete AGN census

The strength of deep X-ray spectroscopy and SED fitting (including the mid-IR/far-IR) – SPICA

Obscured AGN and their role in XRB models

Phase with obscured AGN growth coupled to powerful star formation

AGN likely either Compton thick $(N_H > 10^{24} \text{ cm}^{-2})$ or heavily obscured in this phase

C-thick AGN at z>0.1 invoked to explain the 30 keV XRB: they are expected to contribute from ~10 to 30%, depending on the models (Gilli+07, Treister+09) – see also recent results from Ueda+14 and Ballantyne...

Much of the mass growth of SMBH occurs during the heavily obscured phase? (e.g., Treister+10)

Strong winds/outflows (=feedback) expected in the "blowout" phase

Recently, on the very obscured AGN issue

Compton-thick AGN in the COSMOS survey

The most obscured AGN in the COSMOS (field) – I.

Typically, low-SNR X-ray spectra, careful modeling needed

The most obscured AGN in the COSMOS (field) – II.

Using Chandra Deep Field data

Selection of obscured AGN candidates

Modeling the X-ray spectra. I

Net counts=[20-560, av.=100] **CDF-S** - [220-150, av.=50] **CDF-N**

Using appropriate "torus" modeling

Modeling the X-ray spectra. II

9 sources (6+3) with N_{H} > 10²³ cm⁻²

Column density distributions

X-ray luminosity distributions

Combining the mid-IR information with the strength of X-rays

L_{2-10keV} vs. L_{12µm}: CDF-N

Comparison of the X-ray luminosity with the AGN 12.3µm luminosity (from SED fitting)

Original selection seems to select also "hybrid" sources, where the AGN is not dominant

Example of a source originally selected as having an AGN in mid-IR

X-ray emission from the heavily obscured AGN candidates: clear accretion dominance

			Mineo+14 (see also Ranalli+03)	Kennicutt98	
XID			SFR _X	SFR _{IR}	
	20.5-8keV	$28-1000 \mu m$	converted from L_X	converted from $L_{(8-1000 \mu m)}$	
132	4.2×10^{43}	$6.0 imes 10^{44}$	10500	5 27	
140	2.1×10^{43}	3.5×10^{44}	5250	16	
213	6.8×10^{44}	4.9×10^{45}	170000	221	
274	1.6×10^{43}	1.1×10^{44}	4000	5	
407	1.3×10^{43}	9.3×10^{44}	3250	42	
435	1.1×10^{44}	9.5×10^{45}	27500	428	
ID	T X	T IR	SFR _X	SFRIR	
	L0.5-8keV	₽ 8−1000µm	converted from L_X	converted from $L_{(8-1000\mu m)}$	
82	2.5×10^{44}	1.1×10^{45}	62500	50	
330	2.9×10^{44}	5.5×10^{44}	72500	25	
423	1.5×10^{45}	2.8×10^{46}	375000	1260	
	For the heavily obscured AGN candidates, X-ray emission is due to				
	accretion [SFR(X-ray) too high]. AGN + SF for the other sources				

Results: the most obscured AGN

Obscured AGN: Prospects for SPICA

SMI-LRS (low-resolution spectrometer, R=50, 17–36 µm)

will allow detection of obscured AGN via mid-IR continuum (torus) emission and mid-IR/optical selection (e.g., DOGs, HotDOGs)

SMI-MRS (medium-resolution spectrometer, R≈1000–2000, 18–36 µm)

more "detailed" physics and selection for AGN/SF & modeling via [NeV]_{14.3µm}, [NeV]_{24.3µm}, [OIV]_{25.9µm} mid-IR emission lines (see Spinoglio & Malkan 1992, Gruppioni+16) as with *Spitzer*/IRS

Safari (grating spectrometer, R=300, 34–210 µm)

will allow extension of AGN studies to high redshifts

Overall, potentially strong synergies with X-ray surveys (e.g., Athena)