SMBH formation scenarios

-BH seeds from Poplll stars:

These would collapse from a metalfree gas leading to a top-heavy IMF, corresponding to very massive stars with masses $>100 \mathrm{M}_{\odot}$. Stars with $\mathrm{M}<300 \mathrm{M}_{\odot}$ will produce pair-instability SNae, and their stellar cores would be entirely disrupted leaving no remnants. Stars with $\mathrm{M}>300 \mathrm{M}_{\odot}$ will produce BHs with 100-150 M_{\odot}. The primordial generation of stars could form at redshifts z~20 in DM haloes with $\mathrm{M}>10^{6} \mathrm{M}_{\odot}$, corresponding to populating the peaks above $2.5 \mathrm{\sigma}$ corresponding to a cosmic density of seed BHs: $\rho_{\mathrm{BH}} \sim 100 \mathrm{M}_{\odot} \mathrm{Mpc}^{-3}$
-BH seed from direct collapse of gas clouds
Gas clouds with $\mathrm{M}=10^{3}-10^{6} \mathrm{M} \mathrm{M}_{\odot}$ can directly collaps to BH if fragmentation of the gas cloud can be avoided i.e., high UV flux to avoid cooling and lowmetallicities. The latter condition would be incompatible with the presence of nearby luminous galaxies. These seeds are rarer: a peak density of $0.1 \mathrm{Mpc}^{-3}$ at $\mathrm{z} \simeq 12$

From the first BHs to the first QSOs: planting and growing seeds

collapse of overdense regions of DM primordial density field, followed by merging of DM haloes

Volonteri2010, Dottil+2010 Spin evolution in gas-rich merger remnants (also see Fanidakis+2010)

King+ 2006,2008 "chaotic accretion" $J($ disk $)<2 \mathrm{~J}(\mathrm{BH})$
$\left.M(d i s k)<M(B H)\left(R_{s} / R_{d}\right)\right)^{0.5}$

Physics of accretion

BH growth at $z=6$. $\lambda=1$; nearly continuous accretion from z~10 on $\sim 100 \mathrm{M}_{\text {sun }}$ seed BHs; LF and MF depend on: 1) accretion efficiency; 2) AGN accretion timescale; 3) cosmology.
$\frac{d M}{d t}=\left(\begin{array}{ll}1 &) M \\ =\frac{L_{b o l}}{L_{E d d}}=1 \quad \sim \frac{M c^{2}}{L_{E d d}}\end{array}\right.$

$$
M(t)=M(0) \exp \frac{1 \quad t}{\div}
$$

