Laue Lenses for extending the focusing band beyond 100 keV

Filippo Frontera

University of Ferrara and INAF-IASF, Bologna

on behalf of the "LAUE" Collaboration

Workshop Nazionale su "Astronomia X" Roma, 16 Novembre 2012

Introduction 1/2

- Two main reqs. for spectral studies of many classes of galactic and extragalactic sources:
 - Broad energy band (from fraction of keV to hundreds of keV)
 - High flux sensitivity on source variability time scales.

Introduction 2/2

- The only viable way: focusing telescopes that cover the broadest energy band:
 - Low energy telescopes: (0.1-10 keV) well tested in space;
 - Medium energy telescopes (up to 70/100 keV): already mature (NuStar, ASTRO-H)
 - High energy telescopes (>70/100 keV): under development.

Soft Gamma-Ray telescope Requirements:

- Continuum sensitivity about two orders of magnitude better than INTEGRAL at the same energies (goal: a few x10⁻⁸ ph/(cm² s keV in 10⁵ s, $\Delta E=0.5 E$).
- a much better imaging capability (better than 1 arcmin)

Why to extend the energy passband beyond 70/100 keV?

See, e.g., FF&von Ballmoos 2011

Examples of issues that can be faced with soft γ-ray observations (80/100-600 keV)

- High energy emission physics in the presence of superstrong magnetic fields (magnetars);
- Non thermal processes in cosmic sources (e.g., AGN);
- Origin and distribution of high energy cut-offs in AGNs spectra;
- Origin of Cosmic Hard X-ray background (CHXB).
- Precise role of non-thermal mechanisms in extended objects (e.g., Galaxy Clusters);
- Determination of the antimatter production processes and its origin.
- Gamma-ray source polarization.
- Dark matter probe??

Current spectral status: some examples

High-energy spectra of magnetars

- Which is the origin of the high energy component?
- E.g., Thompson & Beloborodov (2005) model: synchrotron originated by pair production.
- Crucial to know the cutoff of the high energy spectrum.

Emission physics of RQ AGNs

- Basic emission scheme is known: Compton upscattering of seed photons
- But:
- Which is the electron temperature?
- Is there a non-thermal component?
- Photon index and high energy cut-off measurements are crucial.
- E_{cut} vs. Γ could give info about the bulk motion role in the Comptonization process (Titarchuk et al. 2010).

Current status of E_{cut} vs. Γ

Bassani+2012

Emission physics of RL AGN (Blazars)

- Two humps in the SED:
 - one interpreted as synchrotron emission,
 - the other as IC (SSC and/or EC).
- Low L: BL-Lac; High L: FSRQ
- To model SED, soft gamma-ray band (>100 keV) is crucial.

CXB (<100 keV)

- <u>In current synthesis</u> <u>models of CXB,</u> <u>assumption of RQ-AGN</u> <u>populations with</u>
 - <u>a distribution of</u> <u>photon indices</u>,
 - <u>fixed E_{cut} (=200 keV)</u>
- <u>Is it right to assume a</u> <u>fixed EF ?</u>

Gilli et al. 2007

CXB (>100 keV)

2009

- Likely due to Blazars.
- **But:**
 - The most recent results on • **Blazars are in 15-55 keV** (Ajello+2009).
- **Only assumptions about** high energy spectrum
- **Gamma–ray observations** are crucial

Positron annihilation from GC

- Diffuse annihilation line emission with INTEGRAL (integrated flux: 1.7x10⁻³ ph/cm² s).
- Origin still unknown.
- Several models proposed:
 - Dark matter;
 - Antimatter
 - Source of radioactive elements like ²⁶Al, ⁵⁶Co, ⁴⁴Ti
 - Gamma Source (e.g., Pulsar)
 - BH Binaries
- More sensitivity and imaging capability

Weidenspointner+2008

Gamma-ray polarization

A very strong polarization signal found from Cygnus X-1 with INTEGRAL above 400 keV;
Much more sensitivity is requested to extend this search to weaker sources.

Laurent at al. 2011

High energy (>70/100 keV) telescopes: Laue lenses

For a recent review: Frontera & Von Ballmoos 2011

Laue lens principle

- Bragg diffraction in transmission configuration
- Mosaic/bent crystals to extend the passband and get a smooth dependence of the lens effective area with energy;
- Material and lattice planes properly chosen to maximize reflectivity.

Flat mosaic crystals

• Made of misaligned perfect microcrystals: $1 \qquad (\delta^2)$

$$W(\delta) = \frac{1}{\sqrt{2\pi\eta}} \exp\left(-\frac{\delta^2}{2\eta^2}\right)$$

• The energy passband of a mosaic crystal is given by:

$$\Delta E_{fwhm} = \frac{E\beta}{\tan\theta}$$

raggio incidente

where β (mosaicity) = 2.35 η

Activity UNIFE on Laue lenses with flat mosaic crystals

Frontera et al. 2008

Virgilli et al. 2011

Prototype test results

1st prototype

2nd prototype

1st prototype vs. 2nd prototype

A PSF improvement obtained, but not sufficient.

A new assembling technology is needed.

Curved crystals vs. flat crystals

- For the same focal length, angular resolution improves by a factor ~10, moving from 15x15 mm² flat crystals to curved crystals;
- For 20 m FL, angular resolution from 3 arcmin to 20 arcsec;
- Source image spot area can be reduced by a factor ~100.

Laue Project

• Main goals:

- accurate assembly technology for long focal lengths;
- Technology development for bending crystals;
- Production of a 20 m FL lens petal made of bent crystals;
- Feasibility and accommodation study of a space lens.
- Laue Consortium:
 - Scientific Institutions:
 - UNIFE, INAF/IASF-Bologna, CNR/IMEM-Parma;
 - and Industry:
 - DTM-Modena, TAS I-Milan and Turin.

Bent crystal development

- Bending technology through surface grooving (indentation), developed at University of Ferrara;
- Crystal growing and bending technology through lapping process, developed at CNR-IMEM.

Internal structure of a bent crystal

Keitel + 1999 Malgrange 2002

Bent crystals developed for LAUE

Barriere+2010

- **Bent samples of perfect** \bullet Si(111) and Ge(111) developed at UNIFE;
- Bent samples of mosaic **GaAs (220) 25 arcsec** spread, developed at **IMEM-Parma**
- **Massive production of Ge** (111) and GaAs (220) bent crystals 2 mm thick is starting.

Feasibility study of a space lens

Apparatus for lens petal assembling and testing 1/2

Apparatus for lens petal assembling and testing 2/2

Gamma-Ray sources

- Portable betatron (max 2.5 MeV)
- X-ray generator ((320 kV max) with small source focus (0.3 mm)

Gamma-Ray source spectra

Apparatus development status: beamline

Apparatus development status: cleanroom

Apparatus development status: petal development model

Apparatus development status: focal length

Expected effective area

PSF of cylindrically bent crystals

Strips of Ge(111) 30x10 mm²

mm

Expected sensitivity

$J(@200 \text{ keV}) = 3.2 \times 10^{-15} \text{ erg/(cm^2 s keV)}$

Conclusions

- The energy band beyond 100 keV is crucial for settling many key-importance open issues;
- A big effort is in progress for the development of focusing Laue lenses;
- For the first time focusing crystals in a lens, thanks to the "LAUE" project.
- Concrete prospects for proposing a broad band (e.g., 1-600 keV) satellite mission based on Laue lenses and multilayer optics.