e-Rosita: Grasp

Grasp [cm² deg^{2}]

Grasp of 7 e-ROSITA telescopes is $3-4 \mathrm{x}$ higher than 3 XMM-Newton telescopes in the energy range $0.3-2 \mathrm{keV}$!

FMI with 3u shells in X-Ray Test (reallzed in Jtaly by Media Lario!)

PSF of FM1 with 31 shells

MM and Mirror Groups

Target		Energy	PSF			
			HEW**	W90	scattering	
$\mathrm{C}-\mathrm{K}$	0.28 keV	$16.2 \operatorname{arcsec}$			$8^{\text {th }}$ June 2011	
$\mathrm{Al}-\mathrm{K}$	1.49 keV	$16.0 \operatorname{arcsec}$	$74.3 \operatorname{arcsec}$	5.1%	$6^{\text {th }}$ June 2011	
$\mathrm{Ag}-\mathrm{L}$	2.98 keV	$16.3 \operatorname{arcsec}$	$92.8 \operatorname{arcsec}$	6.9%	$8^{\text {th }}$ June 2011	
$\mathrm{Cr}-\mathrm{K}$	5.41 keV	$17.0 \operatorname{arcsec}$	$130.3 \operatorname{arcsec}$	9.5%	$10^{\text {th }}$ June 2011	
$\mathrm{Cu}-\mathrm{K}$	8.04 keV	$15.6 \operatorname{arcsec}$	$140.9 \operatorname{arcsec}$	11.8%	$8^{\text {th }}$ June 2011	

Group	Energy	PSF			Date
		HEW*	W90	scattering	
Shells 40-54	1.49 keV	13.8 arcsec	43.5 arcsec	2.5\%	$7^{\text {th }}$ June 2011
Shells 24-39	1.49 keV	17.8 arcsec	94.6 arcsec	5.2\%	$7^{\text {th }}$ June 2011
Shells 34-39	1.49 keV	19.5 arcsec	101.6 arcsec	9.0\%	$9^{\text {th }}$ June 2011
Shells 28-33	1.49 keV	17.3 arcsec	100.6 arcsec	8.4\%	$10^{\text {th }}$ June 2011
Shells 24-27	1.49 keV	16.5 arcsec	84.5 arcsec	3.2\%	$7^{\text {th }}$ June 2011
Shells 24-27	5.41 keV	20.9 arcsec	186.7 arcsec	14.3\%	$10^{\text {th }}$ June 2011

*HEW determined by using the sub-pixel resolution which is based on the detailed analysis of split events; the effective resolution from this method is approximately 5 arcsec.

Thin glass shell oriented to Wide Field XRay Telescope

N.B.: same mirror height/FL aspect ratio $=0.07$

WFXT being proposed to NASA in the context of the RFI call (Sept 2011)- P.I. S. Murray

Sag of the first polynomial mirror wrt a Wolter I

Profile for shell \#1

WFXT Telescope Configuration

Parameter	Design
Number of Modules	3
Material	Fused Silica
Configuration	Polynomial Profile
Focal Length	5.5 m
MAX \& min top diameters	0.36 \& 1.1 m
MAX and min mirror Length (2 reflections)	$408 \& 220 \mathrm{~mm}$
Coating	Pt + C overcoating
Wall Thickness	$3-1.7$ mm
Number of mirror shells /module	55
Total Weight	900 kg (3 modules including
structure)	

WFXT On-axis effective area

Survey capabilities comparison
GRASP $=$ on-axis $A_{\text {eff }} \times 0.75 * F O V$
MERIT FACTOR FOR SURVEY= GRASP / HEW ${ }^{2}$
ROSAT CHANDRA XMM eROSITA ATHENA WFXT*

GRASP @1 keV $\left(\mathrm{cm}^{2} \mathrm{deg}^{2}\right)$
HEW @2/3
FOV (arcsec)
$\mathbf{3 0}$

Challenge of thin shells with small aspect ratio

Small aspect ratio \rightarrow difficulty in reaching good angular resolution because they are more sensitive to perturbing effects related to edges loads:
$>$ mechanical behavior closer to a "belt-like" configuration rather than a "tube-like"
$>$ border effect errors with a much higher weight in
 determining the PSF
> angular resolution more strongly affected by the slope errors caused by out-of-phase azimuthal errors

very short MSs show degradation 6-16 times larger with respect to long MS

Polishing Step

> IRP 600 Machine developed by ZEEKO (UK)
>7 axis CNC machine tool controller

Bonnet tool can be used for:
$>$ Grolishing (grinding/polishing) coarser-higher removal rate $>$ Polishing

Shell on IRP 600 machine during a grolishing phase

Super-polishing with pitch tool

Dedicated to:

- Micro-roughness requirement achievement (0.5 nm)
- Mid frequencies removing

Result after calibration @ PANTER

Use of lon-Figuring for $\ll 5$ arcsec HEW?

Max working diameter :
54 cm in polar config. 30 cm in cartesian config.

Example of IBF correction of a mirror

Theoretical computation

Focusing in the hard X-ray region (> 10 keV)

$$
A_{e f f} \approx F^{2} \times \theta_{c}^{2} \times R^{2}
$$

At photon energies $>10 \mathrm{keV}$ the cut-off angles for total reflection are very small also for heavy metals
\rightarrow the geometrical areas with usual focal lengths (> 10 m) are in general negligible

NuSTAR

NUSTAR

Deployable Mast

Focal Plane/
Detectors
Optics

- Energy Band: 5-80 keV
- Angular Resolution: ~50" (HPD), ~10" (FWHM)
- Field of View: 13' x 13'
- Energy Resolution: 0.5 keV at $6 \mathrm{keV}, 1.0 \mathrm{keV}$ at 60 keV (FWHM)
- Maximum Flux Measurement Rate: 10,000 cts/s
- ToO response: < 48 hours
- Launch date: February 2012
- Orbit: 550 km x 600 km, 6 degree inclination

Nustar effective Area

The NHXM mission

