e-Rosita: Grasp

Grasp of 7 e-ROSITA telescopes is 3-4 x higher than 3 XMM-Newton telescopes in the energy range 0.3-2 keV!

FM1 with 31 shells in X-Ray Test (realized in Italy by Media Lario!)

PSF of FM1 with 31 shells

MM and Mirror Groups

Townst	Energy		Dete			
larget		HEW*	W90	scattering	Date	
C-K	0.28 keV	16.2 arcsec			8 th June 2011	
AI-K	1.49 keV	16.0 arcsec	74.3 arcsec	5.1%	6 th June 2011	
Ag-L	2.98 keV	16.3 arcsec	92.8 arcsec	6.9%	8 th June 2011	
Cr-K	5.41 keV	17.0 arcsec	130.3 arcsec	9.5%	10 th June 2011	
Cu-K	8.04 keV	15.6 arcsec	140.9 arcsec	11.8%	8 th June 2011	
0	Energy	PSF			Dete	
Group		HEW*	W90	scattering		
Shells 40-54	1.49 keV	13.8 arcsec	43.5 arcsec	2.5%	7 th June 2011	
Shells 24-39	1.49 keV	17.8 arcsec	94.6 arcsec	5.2%	7 th June 2011	
Shells 34-39	1.49 keV	19.5 arcsec	101.6 arcsec	9.0%	9 th June 2011	
Shells 28-33	1.49 keV	17.3 arcsec	100.6 arcsec	8.4%	10 th June 2011	
Shells 24-27	1.49 keV	16.5 arcsec	84.5 arcsec	3.2%	7 th June 2011	
Shells 24-27	5 41 keV	20.9 arcsec	186.7 arcsec	14.3%	10 th June 2011	

*HEW determined by using the sub-pixel resolution which is based on the detailed analysis of split events; the effective resolution from this method is approximately 5 arcsec.

Thin glass shell oriented to Wide Field X-Ray Telescope

N.B.: same mirror height/FL aspect ratio =0.07

WFXT being proposed to NASA in the context of the RFI call (Sept 2011)- P.I. S. Murray

Sag of the first polynomial mirror wrt a Wolter I

WFXT Telescope Configuration

Parameter	Design
Number of Modules	3
Material	Fused Silica
Configuration	Polynomial Profile
Focal Length	5.5 m
MAX & min top diameters	0.36 & 1.1 m
MAX and min mirror Length (2 reflections)	408 & 220 mm
Coating	Pt + C overcoating
Wall Thickness	3 – 1.7 mm
Number of mirror shells /module	55
Total Weight	900 kg (3 modules including structure)

WFXT On-axis effective area

Enerav (keV)

Survey capabilities comparison

 $GRASP = on-axis A_{eff} \times 0.75 * FOV$

MERIT FACTOR FOR SURVEY= GRASP / HEW²

	ROSAT	CHANDRA	XMM	eROSITA	ATHENA	WFXT*
GRASP @1 keV (cm ² deg ²)	300	50	240	750	2300 (just imager)	4400
HEW @2/3 FOV (arcsec)	30	3	20	30	10	5
MERIT FACTOR (cm ² deg ² / arcsec ²)	0.3	5.5	0.6	0.83	23	176

Challenge of thin shells with small aspect ratio

Small aspect ratio → difficulty in reaching good angular resolution because they are **more sensitive to perturbing effects related to edges loads**:

mechanical behavior closer to a "belt-like" configuration rather than a "tube-like"

border effect errors with a much higher weight in determining the PSF

> angular resolution more strongly affected by the slope errors caused by out-of-phase azimuthal errors

12 r F 0.1N in 12 front section points 30°

very short MSs show degradation 6-16 times larger with respect to long MS

Polishing Step

- > IRP 600 Machine developed by ZEEKO (UK)
- 7 axis CNC machine tool controller
- Bonnet tool can be used for:
 Grolishing (grinding/polishing) coarser-higher removal rate
 Polishing

Shell on IRP 600 machine during a grolishing phase

Super-polishing with pitch tool

Dedicated to: – Micro-roughness requirement achievement (0.5nm) – Mid frequencies removing

Result after calibration @ PANTER

Use of Ion-Figuring for <<5 arcsec HEW?

Max working diameter :54 cm in polar config.30 cm in cartesian config.

Example of IBF correction of a mirror

0.088

0.070 9.052

0.034

0.002

-0.038 -0.056

8.874

9.992

37.7

-37.9

75.9

-75.0

-37.3

0.43

Starting surface

38.1

Press space for men

Theoretical computation

- Initial surf: 48 nm rms (λ /13), 216 nm p-v
- Final surf: 11 nm rms ($\lambda/57$), 85 nm p-v
- Working time: 2.5 hours

Focusing in the hard X-ray region (> 10 keV)

At photon energies > 10 keV the cut-off angles for total reflection are very small also for heavy metals

the geometrical areas with usual focal lengths (> 10 m) are in general <u>negligible</u>

NUSTAR

- Energy Band: 5 80 keV
- Angular Resolution: ~50" (HPD), ~10" (FWHM)
- Field of View: 13' x 13'
- Energy Resolution: 0.5 keV at 6 keV, 1.0 keV at 60 keV (FWHM)
- Maximum Flux Measurement Rate: 10,000 cts/s
- ToO response: < 48 hours
- Launch date: February 2012
- Orbit: 550 km x 600 km, 6 degree inclination

Nustar effective Area

The NHXM mission

