

High-throughput X-ray Spectroscopy A look to few perspective studies or ... How and why ?

S. Sciortino INAF – Osservatorio Astronomico di Palermo

largely based on the IXO and ATHENA Study Reports

Energy Resolution: Why ?

A lot of intersting lines in the 0.5- 2 keV range

For $\Delta E \sim 2.5$ ev, R in the 250 - 1000 range much better than RGS, not far from LETGS

At 6 keV, R ~ 2400 much better than CHANDRA HETGS

With 1 sq. meter ==> 6000 cnts in 10 ks for fx ~ 2 x 10^-12 erg/s/cm^2

State of the art, an example: LETGS & Capella (Argiroffi et al. 2003)

fx ~ 8 10^-11 erg/s/cm^2

34 ks Positive order only

He-like Triplet: Density Diagnostic

Table 1 Density-sensitive He-like triplets

Ion	$\lambda(r, i, f)$ (Å)	\mathscr{R}_0	N _c	log <i>n</i> e range ^a	T range ^b (MK)
Cv	40.28/40.71/41.46	11.4	6×10^{8}	7.7–10	0.5–2
N VI	28.79/29.07/29.53	5.3	5.3×10^9	8.7–10.7	0.7–3
O VII	21.60/21.80/22.10	3.74	3.5×10^{10}	9.5–11.5	1.0-4.0
Neix	13.45/13.55/13.70	3.08	8.3×10^{11}	11.0–13.0	2.0-8.0
Mg XI	9.17/9.23/9.31	2.66 ^c	1.0×10^{13}	12.0–14.0	3.3–13
Si XIII	6.65/6.68/6.74	2.33 ^c	8.6×10^{13}	13.0–15.0	5.0-20

- Data derived from Porquet et al. (2001) at maximum formation temperature of ion
- ^a Range where \mathscr{R} is within approximately [0.1, 0.9] times \mathscr{R}_0
- ^b Range of 0.5–2 times maximum formation temperature of ion
- ^c For measurement with CHANDRA HETGS-MEG spectral resolution

An example: Turbulent velocity "detection" vs. thermal broadening

WEAK-WIND IN SINGLE MASSIVE STARS (Huenemoerder et al. 2012 ApJ 756 L34)

O Star Wind accelerated by UV Detailed model and avaialble d wind momentum-luminosity re In a weak wind O star, classica DISCREPANT from modeled r Why important ? Factor of a stellar evolution and cosmic f

He-like triplets ==> X-rays forms at $R \sim 2-5$ Rstar, consistent with LWs Detailed line-profile fits with wind model ==> X-ray inferred mass loss, hot wind [Xray] has larger volume or greater density than cool wind [UV]

AGN inner accretion disk, Fe Ka line: somehow controversial interpretation. It is crucial the capability to assess truly Gen. Relativity broadening vs. reflection emission components from a "torus" of emitting gas sitting at larger distance from BH. Reflection emission should be characterized by narrow ($\Delta E \sim 10 \text{ ev}$) lines that can easily seen with an XMS (and only with an XMS ...)

AGN Spin Distribution & growth history of SMBHs

Need to measure spin for about one hundred of AGN to build a constraining data sample

Figure of merit for weak spectral line detection ==> Number of counts per independent spectral bin.

A clear cut example

Missing Baryons

Phase diagram of baryons in the nearby Universe. Today observations probe the central region of galaxy clusters [green]and somehow the outskirts..

Half of the baryons could hide in a tenuous warm/hot phase ICM. They can be found either in absorption or in emission in the denser filaments. OVIII & OVII absorption lines will allow probing the lower density regions.

Differential Gas Mass Fraction

Apart from OVI (UV line) the other lines fall in the 0.5-2 keV Xray bandpass

Reported X-ray detections controversial and in any case with low significance

2.9 σ Abs. Line at 44.8 Å in a ~ 600 ks Chandra HRC-S/LETG ==> Cv–K α absorption, at z \approx 0.112, produced by a warm (log T = 5.1 K) intergalactic absorber (Zappacosta et al. 2012)

WHIM – How to measure it ...

Galactic foreground emission

Either in emission or in absorption against a bright, distant, bkg source: AGNs (z >0.3), GRBs (z>1)

With an XMS it will be possible to detect the "missing baryons"
Multiple line detections (~30-50% of cases) → T, density and metal content

However no study of dynamics will be possible This requires R > 4000, Aeff > 1000 cm^2 and Msec long exposures

~ 1 sq.m. Telescope with an XMS in the focal plane can do ...

- Spectroscopy of faint, moderate and/or diffuse sources
- This can ONLY be achieved with a X-ray IFS: XMS
- This enables:

- Large scale structures (formation and evolution of cluster, missing baryons whim, snr, sn and connection with explosion mechanisms)

- Feedback in cluster/galaxies/agn

- Physics of intense source and transients (galactic, extragalactic, grbs) with time resolved spectra

~ 1 sq.m. Telescope with an XMS in the focal plane can do ...

Intense Sources (fx~10⁻¹¹- few x10⁻¹² erg/s/cm²)
Physics of (relatively) fast phenomena (i.e. raising phase of flares) *S* Time-resolved Spectra (few ks)

Moderate Sources (fx~5 10⁻¹² – 10⁻¹⁴ erg/s/cm²)
 Physics of emitting plasma Spectra

X-RAY IMAGING/SPECTROSCOPIC MISSION in a NUT

Mirror Structure (with extensible bench ?) & various service subsystems

Focal Plane Assembly With 1 or more Detectors

+ Launcher and orbit -> Mission Duration and background level

In the ESA scenario the largest fairing launcher is the Arianne 5.
-> A fixed structure -> 12.5 m maximum focal length.
-> The largest possible diameter is 2624 mm, dictated by available adapter. This poses a constrain on mirror size and collecting area.

In any realistic scenario, max area $(1 \text{ kev}) < \sim 1.5 \text{ sq. m.}$ Increase of the area at 6 keV -> small radius mirror element, but gain up to ~ 10% maximum Longer focal length -> ext. bench (angular resolution ??)

DONE