Personal tools
Log in
You are here: Home Research Activities Advanced Technologies and Instrumentation

INAF and technology

Every time a large telescope pushes its gaze beyond the limits of the known horizon, our horizon also broadens. And every time a satellite explores the remotest corners of the Universe, something is left on the Earth. Something that concerns our daily lives: new technologies, materials, original solutions to every day problems.

This is because, from Galileo's first telescopes to the Hubble Space Telescope, astrophysics has always been thirsty for technology and innovative materials. Technology and materials at the limit of what is possible, not commercially available, to be conceived and developed from scratch. Technology and materials - like the digital processing of images or foams with shape memory - that have radically improved not just our way of doing science, but also the quality of our lives.

Astrophysics and space research today, cover, for Europe and the entire world, a strategic role of incommensurable value. They are the sector that works as a cohesive element, allowing  joint discussions on platforms for civil security, organisation of defense systems, environmentally sensitive issues, the development of future transport systems and new frontiers in the field of energy.

The "Istituto Nazionale di Astrofisica" is aware of this. Developing and using, every day, cutting-edge instruments for the observation of the Universe, from the ground and space, it has always considered the development of innovative technologies an absolute priority.

The development and construction of projects and experiments for astrophysical research has allowed the bodies of the institute to acquire a level of excellence and know-how that is an international bench-mark in a considerable number of technological sectors: certainly precision optics, but also electronics, telecommunications, computing, microwaves and millimetre waves, mechanics, environmental control, medicine, security, energy and even cultural heritage. These areas represent, for INAF, the motivation for its chosen path within the landscape of innovation and transfer of technology.

It is a logical consequence that cutting-edge technology developed for astrophysical experiments from the ground and space should have positive repercussions for our every day life and the economy of the country. This is the aim of INAF's Technological Innovation Service: to scout for technologies developed for astrophysics with an eye to transferring them to existing businesses and encourage the growth of new spin-off industries in sectors able to absorb the results of the research. These are the two directions that INAF has established and taken in its transfer of technology program. There are already concrete examples of applications, patents and spin-off companies created thanks to INAF research.

Below, the principal sectors of technological activity of INAF are listed.

The Lucchin Schools Return

Jun 01, 2025

The Lucchin Schools Return First Edition of the New INAF PhD School Series Concludes in Asiago

MISTRAL, a wind of change in the SRT observations

May 29, 2025

MISTRAL, a wind of change in the SRT observations MISTRAL is a new-generation receiver for observations at millimeter wavelengths, built as part of the recent project to upgrade the Sardinia Radio Telescope for the study of the high-frequency radio universe. The main features of this instrument are the very high number of detectors cooled to temperatures close to absolute zero and a dedicated cold optical system, which allow for extremely sharp images. MISTRAL made its “first light” by observing three different celestial objects: the Orion Nebula, the radio lobes of the supermassive black hole in the galaxy M87, and the supernova remnant Cassiopeia A. These images represent the first scientific observations at 90 GHz ever obtained using the SRT

Unlocking the secrets of the first Quasars: how they defy the laws of Physics to grow

Nov 20, 2024

Unlocking the secrets of the first Quasars: how they defy the laws of Physics to grow New evidence has been discovered explaining how supermassive black holes formed in the first billion years of the Universe's life. The study, conducted by INAF researchers, analyses 21 distant quasars and reveals that these objects are in a phase of extremely rapid accretion. This provides valuable insights into their formation and evolution, together with that of their host galaxies