Personal tools
Log in
You are here: Home Research Activities Advanced Technologies and Instrumentation Experimental radio, microwaves and gravitation

Experimental radio, microwaves and gravitation

Instrumental activity at radio wavelengths involves two, partially overlapping, scientific communities in Italy, with different scientific objectives. Radio astronomy uses, above all, coherent receivers connected to digital electronic systems for the analysis of the converted signal, on ground-based telescopes with ever larger collecting areas. To increase further the baselines of interferometric systems, possible space missions are being studied.

The study of the CMB (Cosmic Microwave Background), that is, the first light in the Universe, is today carried out using coherent (radio), incoherent (bolometers) and cryogenic quantum receivers, for ground-based telescopes, balloons (Boomerang), and space missions (Planck). Lastly, gravitational experiments using radio science are carried out with interplanetary probes, using, above all, precise radio tracking measurements.

Thanks to the HARPS-N spectrograph, the TNG can see Venus

Feb 10, 2017

Thanks to the HARPS-N spectrograph, the TNG can see Venus TThe HARPS-N spectrograph succeeded in measuring from the Earth the velocity of the clouds in the atmosphere of Venus thanks to its high precision, competing with the Japanese Akatsuki probe, which has recently begun to study the atmosphere of the second planet.

The X-ray Universe 2017

Feb 03, 2017

The X-ray Universe 2017 The symposium (Rome, 6-9 June 2017) is the fifth meeting in the series of the international symposia "The X-ray Universe". The intention is to gather a general collection of research in high energy astrophysics. The symposium will provide a showcase for results, discoveries and expectations from current and future X-ray missions.

IXPE mission: Italy and NASA for new X-ray astronomy

Jan 21, 2017

IXPE mission: Italy and NASA for new X-ray astronomy NASA has announced that it is funding a new mission to study the high-energy Universe: it will be called IXPE (Imaging X-Ray Polarimetry Explorer) and will allow astronomers to explore with unprecedented details some of the most extreme astronomic objects, including stellar and supermassive black holes, neutron stars and pulsars. The mission, scheduled for the end of 2020, will count on a considerable Italian contribution through the Italian Space Agency(ASI), the National Institute for Nuclear Physics (INFN) and the National Institute of Astrophysics (INAF).