Personal tools
Log in
You are here: Home Research Activities Relativistic and Particle Astrophysics

Matter in extreme conditions

Neutron stars represent the final evolutionary phase of massive stars (between 8 and 25 times the mass of the Sun) that end their lives as core-collapse supernovae. All the physical conditions in these objects are extreme, and for this reason they represent ideal laboratories for the exploration of the properties of matter in extreme conditions, not accessible to terrestrial experiments and not found in other astrophysical contexts. Isolated neutron stars (INSs), that is, not belonging to binary systems, are of particular interest. Explaining their physics can provide a complete understanding of the final stage of evolution of massive stars.

In recent years, the Italian scientific community has contributed at a very high level to research in the field of isolated neutron stars. The researchers operate in an international context with large collaborations, and the quality of the work benefits from the synergy that has long existed between the observational and theoretical groups active in Italy. The principal research directions include multi-wavelength observations (from the infrared to gamma-rays) of Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) and the associated modeling, optical and X-ray observations of X-ray Dim Isolated Neutron Stars (XDINSs) and of Central Compact Objects (CCOs) and the construction of detailed models of their surface emission, radio and X-ray observations of Rotating Radio Transients (RRaTs) and of transient magnetars, and the comparative study of these sources in relation to the other classes of Isolated Neutron Stars (INSs).

In an international context, as part of the study of RRaTs, the most important experiment in forthcoming years will be the HITRUN survey at the Parkes radio telescope, with an important Italian contribution. On a national scale, INAF participates in the research on isolated neutron stars in the following projects: Spectral and Timing Properties of Isolated Neutron Stars, Magnetars and Related Objects and the Study of Periodic and Aperiodic Variability of Cosmic X-ray Sources: Data mining in a Decade of Chandra/RXTE/Swift/XMM Databases.

These projects involve satellite observations in the X-ray band with XMM-Newton, Swift, Chandra, Suzaku and Rossi XTE; in the gamma-ray band with Integral; with the optical telescopes, VLT, Gemini and HST and finally in the radio with Parkes, GBT and the GMRT.

The Lucchin Schools Return

Jun 01, 2025

The Lucchin Schools Return First Edition of the New INAF PhD School Series Concludes in Asiago

MISTRAL, a wind of change in the SRT observations

May 29, 2025

MISTRAL, a wind of change in the SRT observations MISTRAL is a new-generation receiver for observations at millimeter wavelengths, built as part of the recent project to upgrade the Sardinia Radio Telescope for the study of the high-frequency radio universe. The main features of this instrument are the very high number of detectors cooled to temperatures close to absolute zero and a dedicated cold optical system, which allow for extremely sharp images. MISTRAL made its “first light” by observing three different celestial objects: the Orion Nebula, the radio lobes of the supermassive black hole in the galaxy M87, and the supernova remnant Cassiopeia A. These images represent the first scientific observations at 90 GHz ever obtained using the SRT

Unlocking the secrets of the first Quasars: how they defy the laws of Physics to grow

Nov 20, 2024

Unlocking the secrets of the first Quasars: how they defy the laws of Physics to grow New evidence has been discovered explaining how supermassive black holes formed in the first billion years of the Universe's life. The study, conducted by INAF researchers, analyses 21 distant quasars and reveals that these objects are in a phase of extremely rapid accretion. This provides valuable insights into their formation and evolution, together with that of their host galaxies