Personal tools
Log in
You are here: Home Research Activities Relativistic and Particle Astrophysics The most powerful cosmic explosions: supernovae and gamma-ray bursts.

The most powerful cosmic explosions: supernovae and gamma-ray bursts.

The study of supernovae (SN) is directly connected to some of the most important fields in modern astrophysics, such as stellar evolution and cosmology. Gamma-ray bursts (GRB) allow the study of physical phenomena in extreme conditions and can also be used as probes of the distant Universe. The correlation between their spectral properties and their emitted energy could lead to their use as standard candles, to study the expansion of the Universe in an alternative and complementary way to type Ia SNe. In addition, both SN and GRB are, and above all will be fundamental for the study of neutrinos and gravitational waves.

Italian research

Type I supernovae: the results from recent years that have involved INAF researchers have provided elements for the understanding of the wide range of observed spectroscopic and photometric properties, and have demonstrated that about 90% of type Ia progenitors have similar masses at the time of explosion. Core-collapse supernovae: for the theoretical study of these objects, a code has been developed that demonstrates the existence of a continuum of properties between the least energetic objects (e.g. SN 1997D) and the most energetic (e.g. SN 1983K). The existence of "ultra-faint" core collapse SNe could have important implications for the study of "silent" GRBs. Association of supernovae with gamma-ray bursts: contrary to what was thought, not all long GRBs are associated with SNe, or at least not with SNe with absolute magnitudes typical of type Ic SNe. On the other hand, GRB 060218 has provided the clearest evidence of the association GRB/SN, and has allowed the system to be observed from birth. The event called GRB 080109 has been interpreted both as pure SN emission (with associated shock break out) and as an under-luminous GRB. Gamma-ray bursts: various Italian groups, both INAF and INFN, belong to research groups connected to Swift, AGILE and Fermi. There is also a significant theoretical contribution in the field of cosmology with GRBs, on emission mechanisms, on the interpretation of short GRBs and on the GRB/SN connection. Programmes have also been initiated to construct a catalogue of all the GRBs detected by INTEGRAL.

There are a great many instruments that can be used in the future in this field. ESO's ELT (European Extremely Large Telescope), the upgraded LVD (Large Volume Detector), the light GRB Monitor, the already mentioned CTA (Cherenkov Telescope Array) and the future satellites EUCLID, SVOM and Jaunus.

The morphology of the X-ray afterglows and of the jetted GeV emission in long gamma-ray bursts

May 12, 2021

The morphology of the X-ray afterglows and of the jetted GeV emission in long gamma-ray bursts In a new article published in the Monthly Notices of the Royal Astronomical Society, an ICRA-ICRANet research team (some of them INAF associates) sheds light on the mass and spin of stellar-mass BHs from an extensive analysis of long-duration GRBs

The best place and time to live in the Milky Way

Mar 05, 2021

The best place and time to live in the Milky Way More than 6 billion years ago, the outskirts of the Milky Way were the safest places for the development of possible life forms, sheltered from the most violent explosions in the universe: gamma-ray bursts and supernovae. This is demonstrated by a new study, led by researchers from INAF and the University of Insubria in Italy, which investigates the incidence of these events throughout the evolution of our galaxy

Magnetic anomalies on the young craters of Mercury

Feb 24, 2021

Magnetic anomalies on the young craters of Mercury It is possible to find a point of convergence between geophysics and planetary geology, and a group of researchers led by Valentina Galluzzi from INAF did so by analyzing the crustal magnetic field of the planet Mercury, focusing on some anomalies identified nearby two recently formed craters