Personal tools
Log in
You are here: Home Research Activities Relativistic and Particle Astrophysics Detection of gravitational waves from astronomical sources

Detection of gravitational waves from astronomical sources

The search for gravitational waves has seen a fundamental change in recent years, with the start of the operational phase of the first generation interferometers, LIGO and Virgo, that having reached their nominal sensitivity, began their first scientific runs searching for high frequency gravitational waves in 2009.

From the point of view of astronomical observations, it is fundamental, once an event that may result in gravitational wave emission is detected with telescopes or astronomical satellites, that the search for an associated (if not strictly simultaneous) gravitational wave signal be initiated, possibly making use of positional information for the event. It is also necessary to accurately predict the expected gravitational wave signal. For this reason the development of a detailed theoretical model is aimed at increasing the probability of detection and also gaining a physical understanding of the sources, laying the foundations for gravitational wave astronomy.

The Italian scientific community active is this area is not especially numerous, but carries out an expert role in many areas: many of the most astrophysically significant gravitational wave studies are carried out through INAF. Of relevance to the forthcoming runs of LIGO and Virgo are the recent studies of the possible connection between high energy, paroxysmal events and gravitational waves. Theoretical activity is also very developed. Oscillations of neutron stars are the subject of advanced research. Binary systems made up of massive black holes will be of great importance to the LISA mission. LISA will be able to detect the gravitational waves from these systems to great distances (redshifts z~10-15) and may detect up to a hundred events per year. Detailed numerical simulations are being developed by some groups, to investigate both the astrophysics of binary black hole systems and the possible cosmological impact of these systems. Currently, the large facilities Virgo and LIGO are being used, and in the future, as well as advancements in these structures, the Einstein Telescope and LISA will also be important.

Light in Astronomy 2017

Nov 14, 2017

Light in Astronomy 2017 Light in Astronomy, organized by INAF in collaboration with the Italian Astronomical Society-SAIt, will be a week (13-19 November) dedicated to satisfying curiosity about the Universe thanks to the opening in Italy of INAF premises, including the astronomical observatories.

Marsis radar reveals that on Mars all that echoes is not ice

Oct 28, 2017

Marsis radar reveals that on Mars all that echoes is not ice The low dielectric constant of the Meridiani Planum deposits is consistent with a thick layer of ice-free, porous, basaltic sand. This study is fundamental to identify techniques that may help find the planet’s areas with accessible water ice.

A 3D step towards sorting out the Gamma-Ray Bursts zoo

Oct 13, 2017

A 3D step towards sorting out the Gamma-Ray Bursts zoo A powerful tool for characterizing and classifying gamma-ray bursts (GRBs) to allow their use as tracers of the expansion history of the universe has recently been presented by an international team of researchers led by Dr. Maria Dainotti