Personal tools
Log in
You are here: Home Research Activities Relativistic and Particle Astrophysics The origin of cosmic rays and dark matter

The origin of cosmic rays and dark matter

The last three years have seen unprecedented developments in the field of the physics of cosmic rays, both from an observational and theoretical point of view. Observations made with the Cherenkov, MAGIC, VERITAS and HESS telescopes have led to the detection of high energy gamma-rays from supernova remnants, the most plausible sources of Galactic cosmic rays. From a theoretical point of view, recent years have seen the development of a non-linear theory for particle acceleration in supernova remnants, a crucial ingredient for the understanding of the origin of cosmic rays and to describe the multi-frequency observations of these sources.

Studies into the origin of cosmic rays have a long tradition in Italy and the Italian community continues to play an extremely important and active role today. This is illustrated not only by the number of scientists of various levels involved, for example, in the search for sources with the Fermi satellite or the operation of PAO, but also by the importance and resonance of the results achieved. INAF is also providing a key contribution to the hardware of the MAGIC-II telescope.

There have been two important developments in the last three years on the theoretical/phenomenological side: 1) the formalisation of a non-linear theory for particle acceleration in shock waves, 2) the development of the model of the dip for the transition of Galactic and extragalactic cosmic rays. Forthcoming years will be a golden period for the field of cosmic ray research given that the Fermi telescope and Cherenkov telescopes and ground-based detectors are already inundating the field with precious data. Italian groups have provided a fundamental contribution to this field, and will continue to investigate the many aspects that are still unclear, from the connection between supernova remnants and and cosmic rays observed from the Earth to the extension of studies of the interaction between cosmic rays and the region around the source. In this field, use is made of large structures such as KASCADE Grande, the Pierre Auger Observatory, MAGIC and Jem-EUSO.

Radio evidence of a minor merger in the Shapley supercluster

Jan 17, 2022

Radio evidence of a minor merger in the Shapley supercluster A group of radio astronomers led by INAF has conducted a multi-frequency and multi-band study of the Shapley Supercluster, where the formation of large structures is ongoing at the present cosmological age. Radio astronomers have discovered a radio emission that acts as a "bridge" between a cluster of galaxies and a group of galaxies

Multiwavelength snapshot of a repeating fast radio burst

Dec 09, 2021

Multiwavelength snapshot of a repeating fast radio burst With a multiwavelength campaign, a group of astronomers led by the Italian National Institute for Astrophysics (INAF) studied a repeating fast radio burst (FRB). The object FRB20201124A, discovered in November 2020, reactivated in March 2021, emitting a series of radio bursts

Classifying Seyfert Galaxies with Deep Learning

Sep 28, 2021

Classifying Seyfert Galaxies with Deep Learning Scientist uses deep learning to identify low luminous Seyfert 1.9 galaxies that are usually missed by human inspection among ten thousands of spectra. These results are published in the Astrophysical Journal Supplement Series by Yen Chen Chen, in the department of physics at Sapienza University of Rome and ICRANet