Personal tools
Log in
You are here: Home Research Activities Sun and Solar System Heliospheric and interplanetary physics

The solar wind: acceleration mechanisms, turbulence and heating

The study of mass loss from the Sun due to the solar wind relies principally on observations from space, both "remote-sensing", using instruments for UV and EUV
images of the solar disk and white light and UV coronographs, as well as via "in situ" measurements of characteristic parameters (velocity, magnetic and electric field, density, temperature). The measurements are necessarily supported by the analysis of theoretical models and by the comparison with the results of high precision numerical simulations.
The Italian community is constantly involved in all the phases of the above mentioned study, both in the development of instruments on-board satellites and numerical codes, as well as data analysis and theoretical modeling. The magnetic turbulence in the solar wind has a decisive influence on the processes that transport energetic particles into interplanetary space. In turn, the transport influences the acceleration processes, like stochastic acceleration and so-called "diffusive shock acceleration".

INAF researcher wins a Consolidator Grant 2017

Dec 20, 2017

INAF researcher wins a Consolidator Grant 2017 Two black hole systems are the investigational topic of DEMOBLACK: one of the projects that have been granted the European Consolidator Grant, which was submitted by Michela Mapelli, a researcher of the National Institute for Astrophysics-INAF and Professor at the University of Innsbruck in Austria

Light in Astronomy 2017

Nov 14, 2017

Light in Astronomy 2017 Light in Astronomy, organized by INAF in collaboration with the Italian Astronomical Society-SAIt, will be a week (13-19 November) dedicated to satisfying curiosity about the Universe thanks to the opening in Italy of INAF premises, including the astronomical observatories.

Marsis radar reveals that on Mars all that echoes is not ice

Oct 28, 2017

Marsis radar reveals that on Mars all that echoes is not ice The low dielectric constant of the Meridiani Planum deposits is consistent with a thick layer of ice-free, porous, basaltic sand. This study is fundamental to identify techniques that may help find the planet’s areas with accessible water ice.